Replica method: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(New page: Free energy of fluid in a matrix of configuration <math>\{ q^{N_0} \}</math> in the Canonical (<math>NVT</math>) ensemble is given by: :<math>- \beta F_1 (q^{N_0}) = \log Z_1 (q^{N_0}) ...)
 
No edit summary
Line 1: Line 1:
Free energy of fluid in a matrix of configuration  
The [[Helmholtz energy function]] of fluid in a matrix of configuration  
<math>\{ q^{N_0} \}</math> in the Canonical (<math>NVT</math>) ensemble is given by:
<math>\{ q^{N_0} \}</math> in the Canonical (<math>NVT</math>) ensemble is given by:


:<math>- \beta F_1 (q^{N_0}) = \log Z_1  (q^{N_0})
:<math>- \beta A_1 (q^{N_0}) = \log Z_1  (q^{N_0})
= \log \left( \frac{1}{N_1!}  
= \log \left( \frac{1}{N_1!}  
\int \exp [- \beta (H_{01}(r^{N_1}, q^{N_0}) + H_{11}(r^{N_1}, q^{N_0}) )]~d \{ r \}^{N_1} \right)</math>
\int \exp [- \beta (H_{01}(r^{N_1}, q^{N_0}) + H_{11}(r^{N_1}, q^{N_0}) )]~d \{ r \}^{N_1} \right)</math>


where <math>Z_1  (q^{N_0})</math> is the fluid partition function, and <math>H_{00}</math>
where <math>Z_1  (q^{N_0})</math> is the fluid [[partition function]], and <math>H_{00}</math>
is the Hamiltonian of the matrix.
is the Hamiltonian of the matrix.
Taking an average over matrix configurations gives
Taking an average over matrix configurations gives


:<math>- \beta \overline{F}_1 = \frac{1}{N_0!Z_0} \int \exp [-\beta_0 H_{00} ( q^{N_0})] ~  \log Z_1  (q^{N_0}) ~d \{  q \}^{N_0}</math>
:<math>- \beta \overline{A}_1 = \frac{1}{N_0!Z_0} \int \exp [-\beta_0 H_{00} ( q^{N_0})] ~  \log Z_1  (q^{N_0}) ~d \{  q \}^{N_0}</math>


\cite{JPFMP_1975_05_0965,JPAMG_1976_09_01595}
(Ref.s 1 and 2) An important mathematical trick to get rid of the logarithm inside of the integral is
Important mathematical trick to get rid of the logarithm inside of the integral:


:<math>\log x = \lim_{s \rightarrow 0} \frac{{\rm d}}{{\rm d}s}x^s</math>
:<math>\log x = \lim_{s \rightarrow 0} \frac{{\rm d}}{{\rm d}s}x^s</math>
Line 25: Line 24:
The Hamiltonian written in this form describes a completely equilibrated system
The Hamiltonian written in this form describes a completely equilibrated system
of <math>s+1</math> components; the matrix and <math>s</math> identical non-interacting copies (''replicas'') of the fluid.
of <math>s+1</math> components; the matrix and <math>s</math> identical non-interacting copies (''replicas'') of the fluid.
Thus the relation between the free energy of the non-equilibrium partially frozen
Thus the relation between the [[Helmholtz energy function]] of the non-equilibrium partially frozen
and the replica (equilibrium) system is given by
and the replica (equilibrium) system is given by


:<math>- \beta \overline{F}_1 = \lim_{s \rightarrow 0} \frac{{\rm d}}{{\rm d}s} [- \beta F^{\rm rep} (s) ]
:<math>- \beta \overline{A}_1 = \lim_{s \rightarrow 0} \frac{{\rm d}}{{\rm d}s} [- \beta A^{\rm rep} (s) ]
</math>
</math>.
==References==
==References==
#[http://dx.doi.org/10.1088/0305-4608/5/5/017 S F Edwards and P W Anderson  "Theory of spin glasses",Journal of Physics F: Metal Physics '''5''' pp.  965-974  (1975)]
#[http://dx.doi.org/10.1088/0305-4608/5/5/017 S F Edwards and P W Anderson  "Theory of spin glasses",Journal of Physics F: Metal Physics '''5''' pp.  965-974  (1975)]
#[http://dx.doi.org/10.1088/0305-4470/9/10/011 S F Edwards and R C Jones "The eigenvalue spectrum of a large symmetric random matrix", Journal of Physics A: Mathematical and General  '''9''' pp. 1595-1603 (1976)]
#[http://dx.doi.org/10.1088/0305-4470/9/10/011 S F Edwards and R C Jones "The eigenvalue spectrum of a large symmetric random matrix", Journal of Physics A: Mathematical and General  '''9''' pp. 1595-1603 (1976)]

Revision as of 12:07, 22 May 2007

The Helmholtz energy function of fluid in a matrix of configuration in the Canonical () ensemble is given by:

where is the fluid partition function, and is the Hamiltonian of the matrix. Taking an average over matrix configurations gives

(Ref.s 1 and 2) An important mathematical trick to get rid of the logarithm inside of the integral is

one arrives at

The Hamiltonian written in this form describes a completely equilibrated system of components; the matrix and identical non-interacting copies (replicas) of the fluid. Thus the relation between the Helmholtz energy function of the non-equilibrium partially frozen and the replica (equilibrium) system is given by

.

References

  1. S F Edwards and P W Anderson "Theory of spin glasses",Journal of Physics F: Metal Physics 5 pp. 965-974 (1975)
  2. S F Edwards and R C Jones "The eigenvalue spectrum of a large symmetric random matrix", Journal of Physics A: Mathematical and General 9 pp. 1595-1603 (1976)