Partition function: Difference between revisions
Carl McBride (talk | contribs) mNo edit summary |
Carl McBride (talk | contribs) m (Replaced 'free energy' by 'Helmholtz energy function') |
||
| Line 8: | Line 8: | ||
the [[Boltzmann constant]]. | the [[Boltzmann constant]]. | ||
The partition function of a system is related to | The partition function of a system is related to the [[Helmholtz energy function]] through the formula | ||
:<math>\left. | :<math>\left.A\right.=-k_BT\log Z.</math> | ||
This connection can be derived from the fact that <math>k_B\log\Omega(E)</math> is the | This connection can be derived from the fact that <math>k_B\log\Omega(E)</math> is the | ||
| Line 41: | Line 41: | ||
is | is | ||
:<math>\frac{1}{k_BT}(TS(E_0)-E_0)=-\frac{ | :<math>\frac{1}{k_BT}(TS(E_0)-E_0)=-\frac{A}{k_BT}</math> | ||
the thermodynamic definition of the [[ | the thermodynamic definition of the [[Helmholtz energy function]]. Thus, when <math>N</math> is large, | ||
:<math>\left. | :<math>\left.A\right.=-k_BT\log Z.</math> | ||
Revision as of 09:51, 21 May 2007
The partition function of a system in contact with a thermal bath at temperature is the normalization constant of the Boltzmann distribution function, and therefore its expression is given by
- ,
where is the density of states with energy and the Boltzmann constant.
The partition function of a system is related to the Helmholtz energy function through the formula
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.A\right.=-k_{B}T\log Z.}
This connection can be derived from the fact that Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle k_{B}\log \Omega (E)} is the entropy of a system with total energy . This is an extensive magnitude in the sense that, for large systems (i.e. in the thermodynamic limit, when the number of particles or the volume Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle V\to \infty } ), it is proportional to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} . In other words, if we assume Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} large, then
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.k_B\right. \log\Omega(E)=Ns(e),}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s(e)} is the entropy per particle in the thermodynamic limit, which is a function of the energy per particle Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e=E/N} . We can therefore write
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.Z(T)\right.=N\int \exp\{N(s(e)-e/T)/k_B\}\,de.}
Since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} is large, this integral can be performed through steepest descent, and we obtain
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.Z(T)\right.=N\exp\{N(s(e_0)-e_0/k_BT)\}} ,
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e_0} is the value that maximizes the argument in the exponential; in other words, the solution to
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.s'(e_0)\right.=1/T.}
This is the thermodynamic formula for the inverse temperature provided Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e_0} is the mean energy per particle of the system. On the other hand, the argument in the exponential is
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{k_BT}(TS(E_0)-E_0)=-\frac{A}{k_BT}}
the thermodynamic definition of the Helmholtz energy function. Thus, when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} is large,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.A\right.=-k_BT\log Z.}