Square well model: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎References: Added a recent publication)
m (Added a recent publication)
Line 23: Line 23:
==Direct correlation function==
==Direct correlation function==
[[Direct correlation function]] <ref>[http://dx.doi.org/10.1063/1.3154583  S. Hlushak, A. Trokhymchuk, and S. Sokolowski "Direct correlation function of the square-well fluid with attractive well width up to two particle diameters", Journal of Chemical Physics '''130''' 234511 (2009)]</ref>.
[[Direct correlation function]] <ref>[http://dx.doi.org/10.1063/1.3154583  S. Hlushak, A. Trokhymchuk, and S. Sokolowski "Direct correlation function of the square-well fluid with attractive well width up to two particle diameters", Journal of Chemical Physics '''130''' 234511 (2009)]</ref>.
==Helmholtz energy function==
[[Helmholtz energy function]] <ref>[https://doi.org/10.1080/00268976.2017.1392051 Francisco Sastre, Elizabeth Moreno-Hilario, Maria Guadalupe Sotelo-Serna and Alejandro Gil-Villegas "Microcanonical-ensemble computer simulation of the high-temperature expansion coefficients of the Helmholtz free energy of a square-well fluid", Molecular Physics '''116''' pp. 351-360 (2018)]</ref>.
==See also==
==See also==
*[[2-dimensional square well model]]
*[[2-dimensional square well model]]

Revision as of 12:09, 9 January 2018

The square well model is given by [1]

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{12}\left( r \right) = \left\{ \begin{array}{ccc} \infty & ; & r < \sigma \\ - \epsilon & ; &\sigma \le r < \lambda \sigma \\ 0 & ; & r \ge \lambda \sigma \end{array} \right. }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{12}(r)} is the intermolecular pair potential, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon} is the well depth, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} is the distance between site 1 and site 2 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r := |\mathbf{r}_1 - \mathbf{r}_2|} , σ is the hard diameter and λ > 1. For an infinitesimally narrow well one has the sticky hard sphere model proposed by Baxter.

Equation of state

Main article: Equations of state for the square well model

Virial coefficients

Main article: Square well potential: virial coefficients

Liquid-vapour coexistence

[2]

Critical point

[3] [4] [5]

Direct correlation function

Direct correlation function [6].

Helmholtz energy function

Helmholtz energy function [7].

See also

References

Related reading