Third law of thermodynamics: Difference between revisions
Carl McBride (talk | contribs) m (Added original reference) |
Carl McBride (talk | contribs) (→References: Added a recent publication) |
||
| Line 22: | Line 22: | ||
;Related reading | ;Related reading | ||
*[http://dx.doi.org/10.1088/0305-4470/22/1/021 P. T. Landsberg "A comment on Nernst's theorem", Journal of Physics A: Mathematical and General '''22''' pp. 139-141 (1989)] | *[http://dx.doi.org/10.1088/0305-4470/22/1/021 P. T. Landsberg "A comment on Nernst's theorem", Journal of Physics A: Mathematical and General '''22''' pp. 139-141 (1989)] | ||
*[http://dx.doi.org/10.1038/ncomms14538 Lluís Masanes and Jonathan Oppenheim "A general derivation and quantification of the third law of thermodynamics", Nature Communications '''8''' 14538 (2017)] | |||
[[category: classical thermodynamics]] | [[category: classical thermodynamics]] | ||
[[category: quantum mechanics]] | [[category: quantum mechanics]] | ||
Latest revision as of 17:28, 14 March 2017
The third law of thermodynamics (or Nernst's theorem after the experimental work of Walther Nernst in 1906 [1]) states that the entropy of a system approaches a minimum (that of its ground state) as one approaches the temperature of absolute zero. One can write
where is the number of particles. Note that there are systems whose ground state entropy is not zero, for example metastable states or glasses, or systems with weakly or non-coupled spins that are not subject to an ordering field.
Implications[edit]
The heat capacity (for either pressure or volume) tends to zero as one approaches absolute zero. From
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_{p,V}(T)= T \left. \frac{\partial S}{\partial T} \right\vert_{p,V} }
one has
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S(T) - S(0) = \int_0^x \frac{C_{p,V}(T)}{T} ~\mathrm{d}T}
thus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C \rightarrow 0} as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T \rightarrow 0} , otherwise the integrand would become infinite.
Similarly for the thermal expansion coefficient
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha := \frac{1}{V} \left. \frac{\partial V}{\partial T} \right\vert_p = -\frac{1}{V} \left. \frac{\partial S}{\partial p} \right\vert_T \rightarrow 0}
References[edit]
- Related reading