Mie potential: Difference between revisions
Jump to navigation
Jump to search
(Give an expression for the location of the potential minimum.) |
Carl McBride (talk | contribs) (→Second virial coefficient: Added a recent publication) |
||
| Line 15: | Line 15: | ||
<ref>[http://dx.doi.org/10.1063/1.2953331 Afshin Eskandari Nasrabad, Nader Mansoori Oghaz, and Behzad Haghighi "Transport properties of Mie(14,7) fluids: Molecular dynamics simulation and theory", Journal of Chemical Physics '''129''' 024507 (2008)]</ref> | <ref>[http://dx.doi.org/10.1063/1.2953331 Afshin Eskandari Nasrabad, Nader Mansoori Oghaz, and Behzad Haghighi "Transport properties of Mie(14,7) fluids: Molecular dynamics simulation and theory", Journal of Chemical Physics '''129''' 024507 (2008)]</ref> | ||
==Second virial coefficient== | ==Second virial coefficient== | ||
The [[second virial coefficient]] and the Vliegenthart–Lekkerkerker relation <ref>[http://dx.doi.org/10.1063/1.3578469 V. L. Kulinskii "The Vliegenthart–Lekkerkerker relation: The case of the Mie-fluids", Journal of Chemical Physics '''134''' 144111 (2011)]</ref>. | The [[second virial coefficient]] <ref>[http://dx.doi.org/10.1063/1.4961653 D. M. Heyes, G. Rickayzen, S. Pieprzyk and A. C. Brańka "The second virial coefficient and critical point behavior of the Mie Potential", Journal of Chemical Physics '''145''' 084505 (2016)]</ref> and the Vliegenthart–Lekkerkerker relation <ref>[http://dx.doi.org/10.1063/1.3578469 V. L. Kulinskii "The Vliegenthart–Lekkerkerker relation: The case of the Mie-fluids", Journal of Chemical Physics '''134''' 144111 (2011)]</ref>. | ||
==References== | ==References== | ||
<references/> | <references/> | ||
Revision as of 11:51, 16 September 2016
The Mie potential was proposed by Gustav Mie in 1903 [1]. It is given by
where:
- is the intermolecular pair potential between two particles at a distance r;
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma } is the value of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi(r)=0} ;
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon } : well depth (energy)
Note that when and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m=6} this becomes the Lennard-Jones model.
The location of the potential minimum is given by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r_{min} = \left( \frac{n}{m} \sigma^{n-m} \right) ^ {1/(n-m)} }
(14,7) model
Second virial coefficient
The second virial coefficient [4] and the Vliegenthart–Lekkerkerker relation [5].
References
- ↑ Gustav Mie "Zur kinetischen Theorie der einatomigen Körper", Annalen der Physik 11 pp. 657-697 (1903) (Note: check the content of this reference)
- ↑ Afshin Eskandari Nasrabad "Monte Carlo simulations of thermodynamic and structural properties of Mie(14,7) fluids", Journal of Chemical Physics 128 154514 (2008)
- ↑ Afshin Eskandari Nasrabad, Nader Mansoori Oghaz, and Behzad Haghighi "Transport properties of Mie(14,7) fluids: Molecular dynamics simulation and theory", Journal of Chemical Physics 129 024507 (2008)
- ↑ D. M. Heyes, G. Rickayzen, S. Pieprzyk and A. C. Brańka "The second virial coefficient and critical point behavior of the Mie Potential", Journal of Chemical Physics 145 084505 (2016)
- ↑ V. L. Kulinskii "The Vliegenthart–Lekkerkerker relation: The case of the Mie-fluids", Journal of Chemical Physics 134 144111 (2011)
Related reading
- Pedro Orea, Yuri Reyes-Mercado, Yurko Duda "Some universal trends of the Mie(n,m) fluid thermodynamics", Physics Letters A 372 pp. 7024-7027 (2008)
- N.S. Ramrattan, C. Avendaño, E.A. Müller and A. Galindo "A corresponding-states framework for the description of the Mie family of intermolecular potentials", Molecular Physics 113 pp. 932-947 (2015)