Vega equation of state for hard ellipsoids: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 44: Line 44:
==References==
==References==
#[http://dx.doi.org/10.1080/002689797169934 Carlos Vega "Virial coefficients and equation of state of hard ellipsoids", Molecular Physics '''92''' pp. 651-665 (1997)]
#[http://dx.doi.org/10.1080/002689797169934 Carlos Vega "Virial coefficients and equation of state of hard ellipsoids", Molecular Physics '''92''' pp. 651-665 (1997)]
#[http://dx.doi.org/10.1016/j.fluid.2007.03.026 Carl McBride and Enrique Lomba  "Hard biaxial ellipsoids revisited: Numerical results", Fluid Phase Equilibria  (2007)]

Revision as of 10:25, 24 April 2007

The Vega equation of state for an isotropic fluid of hard (biaxial) ellipsoids is given by (Ref. 1 Eq. 20):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z = 1+B_2^*y + B_3^*y^2 + B_4^*y^3 + B_5^*y^4 + \frac{B_2}{4} \left( \frac{1+y+y^2-y^3}{(1-y)^3} -1 -4y -10y^2 -18.3648y^3 - 28.2245y^4 \right) }

where is the compressibility factor and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} is the volume fraction, given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y= \rho V} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho} is the number density. The virial coefficients are given by the fits

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_3^* = 10 + 13.094756 \alpha' - 2.073909\tau' + 4.096689 \alpha'^2 + 2.325342\tau'^2 - 5.791266\alpha' \tau',}


and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_5^* = 28.2245 + 21.288105\alpha' + 4.525788\tau' + 36.032793\alpha'^2 + 59.0098\tau'^2 - 118.407497\alpha' \tau' + 24.164622\alpha'^2 \tau' + 139.766174\alpha' \tau'^2 - 50.490244\alpha'^3 - 120.995139\tau'^3 + 12.624655\alpha'^3\tau', }

where

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_n^*= B_n/V^{n-1}} ,


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau' = \frac{4 \pi R^2}{S} -1,}

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha' = \frac{RS}{3V}-1.}

where is the volume, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} , the surface area, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} the mean radius of curvature.

For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_2} see B_2 for any hard convex body.

References

  1. Carlos Vega "Virial coefficients and equation of state of hard ellipsoids", Molecular Physics 92 pp. 651-665 (1997)
  2. Carl McBride and Enrique Lomba "Hard biaxial ellipsoids revisited: Numerical results", Fluid Phase Equilibria (2007)