Manning and Rosen potential: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(Created page with "{{Stub-general}} The '''Manning and Rosen potential''' is given by <ref>[http://dx.doi.org/10.1103/PhysRev.44.951 Millard F. Manning and Nathan Rosen "A Potential Function for...")
 
No edit summary
 
Line 2: Line 2:
The '''Manning and Rosen potential''' is given by <ref>[http://dx.doi.org/10.1103/PhysRev.44.951 Millard F. Manning and Nathan Rosen "A Potential Function for the Vibrations of Diatomic Molecules", Physical Review '''44''' p. 953 (&sect; 10) (1933)]</ref>
The '''Manning and Rosen potential''' is given by <ref>[http://dx.doi.org/10.1103/PhysRev.44.951 Millard F. Manning and Nathan Rosen "A Potential Function for the Vibrations of Diatomic Molecules", Physical Review '''44''' p. 953 (&sect; 10) (1933)]</ref>


:<math>\Phi(r) =  \frac{1}{k\rho^2 } \left[ \frac{\beta ( \beta -1) e^{-2r/\rho}}{(1-e^{-r/\rho})^2} - \frac{Ae^{-r/\rho})}{1-e^{-r/\rho})} \right]</math>  
:<math>\Phi(r) =  \frac{1}{k\rho^2 } \left[ \frac{\beta ( \beta -1) e^{-2r/\rho}}{(1-e^{-r/\rho})^2} - \frac{Ae^{-r/\rho}}{1-e^{-r/\rho}} \right]</math>  





Latest revision as of 16:02, 4 July 2012

This article is a 'stub' page, it has no, or next to no, content. It is here at the moment to help form part of the structure of SklogWiki. If you add sufficient material to this article then please remove the {{Stub-general}} template from this page.

The Manning and Rosen potential is given by [1]


References[edit]