Canonical ensemble: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) m (→Partition Function: Added classical criteria) |
Carl McBride (talk | contribs) m (Added a see also section) |
||
| Line 24: | Line 24: | ||
* <math> \left( R^*\right)^{3N} </math> represent the 3N position coordinates of the particles (reduced with the system size): i.e. <math> \int d (R^*)^{3N} = 1 </math> | * <math> \left( R^*\right)^{3N} </math> represent the 3N position coordinates of the particles (reduced with the system size): i.e. <math> \int d (R^*)^{3N} = 1 </math> | ||
==See also== | |||
*[[Ideal gas partition function]] | |||
==References== | ==References== | ||
<references/> | <references/> | ||
[[Category:Statistical mechanics]] | [[Category:Statistical mechanics]] | ||
Revision as of 12:08, 31 August 2011
Variables:
- Number of Particles,
- Volume,
Partition Function
The classical partition function for a one-component system in a three-dimensional space, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Q_{NVT}} , is given by:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Q_{NVT}={\frac {V^{N}}{N!\Lambda ^{3N}}}\int d(R^{*})^{3N}\exp \left[-\beta U\left(V,(R^{*})^{3N}\right)\right]~~~~~~~~~~\left({\frac {V}{N\Lambda ^{3}}}\gg 1\right)}
where:
- is the de Broglie thermal wavelength (depends on the temperature)
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta := \frac{1}{k_B T} } , with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B } being the Boltzmann constant, and T the temperature.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U } is the potential energy, which depends on the coordinates of the particles (and on the interaction model)
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( R^*\right)^{3N} } represent the 3N position coordinates of the particles (reduced with the system size): i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int d (R^*)^{3N} = 1 }