Soft sphere potential: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(Added a publication)
(Added two EOS (for n=6 and 9))
Line 9: Line 9:
where <math> \Phi_{12}\left(r \right) </math> is the [[intermolecular pair potential]] between two soft spheres separated by  a distance <math>r := |\mathbf{r}_1 - \mathbf{r}_2|</math>, <math>\epsilon </math> is the interaction strength and <math> \sigma </math> is the diameter of the sphere. Frequently the value of <math>n</math> is taken to be 12, thus the model effectively becomes the high temperature limit of the [[Lennard-Jones model]] <ref>[http://dx.doi.org/10.1103/PhysRevA.2.221 Jean-Pierre Hansen "Phase Transition of the Lennard-Jones System. II. High-Temperature Limit", Physical Review A  '''2''' pp. 221-230 (1970)]</ref>. If <math>n\rightarrow \infty</math> one has the [[hard sphere model]]. For <math>n \le 3</math> no thermodynamically stable phases are found.
where <math> \Phi_{12}\left(r \right) </math> is the [[intermolecular pair potential]] between two soft spheres separated by  a distance <math>r := |\mathbf{r}_1 - \mathbf{r}_2|</math>, <math>\epsilon </math> is the interaction strength and <math> \sigma </math> is the diameter of the sphere. Frequently the value of <math>n</math> is taken to be 12, thus the model effectively becomes the high temperature limit of the [[Lennard-Jones model]] <ref>[http://dx.doi.org/10.1103/PhysRevA.2.221 Jean-Pierre Hansen "Phase Transition of the Lennard-Jones System. II. High-Temperature Limit", Physical Review A  '''2''' pp. 221-230 (1970)]</ref>. If <math>n\rightarrow \infty</math> one has the [[hard sphere model]]. For <math>n \le 3</math> no thermodynamically stable phases are found.
==Equation of state==
==Equation of state==
<ref>[http://dx.doi.org/10.1063/1.1672728 William G. Hoover, Marvin Ross, Keith W. Johnson, Douglas Henderson, John A. Barker and Bryan C. Brown "Soft-Sphere Equation of State", Journal of Chemical Physics '''52''' pp. 4931-4941 (1970)]</ref>
The soft-sphere [[Equations of state | equation of state]]<ref>[http://dx.doi.org/10.1063/1.1672728 William G. Hoover, Marvin Ross, Keith W. Johnson, Douglas Henderson, John A. Barker and Bryan C. Brown "Soft-Sphere Equation of State", Journal of Chemical Physics '''52''' pp. 4931-4941 (1970)]</ref> has recently been studied by Tan, Schultz and Kofke<ref name="Tan">[http://dx.doi.org/10.1080/00268976.2010.520041 Tai Boon Tan, Andrew J. Schultz and David A. Kofke "Virial coefficients, equation of state, and solid-fluid coexistence for the soft sphere model", Molecular Physics '''109''' pp. 123-132 (2011)]</ref> and experssed in terms of [[Padé approximants]]. For <math>n=6</math> one has (Eq. 8):
 
 
:<math>Z_{n=6} = \frac{1 + 7.432255 \rho + 23.854807 \rho^2 + 40.330195 \rho^3 + 34.393896 \rho^4 + 10.723480 \rho^5}{1+ 3.720037 \rho + 4.493218 \rho^2 + 1.554135 \rho^3}</math>
 
 
and for <math>n=9</math> one has (Eq. 9):
 
 
:<math>Z_{n=9} = \frac{1 + 3.098829 \rho + 5.188915 \rho^2 + 5.019851 \rho^3 + 2.673385 \rho^4 + 0.601529 \rho^5}{1+ 0.262771 \rho + 0.168052 \rho^2 - 0.010554 \rho^3}</math>
==Virial coefficients==
==Virial coefficients==
<ref>[http://dx.doi.org/10.1080/00268976.2010.520041 Tai Boon Tan, Andrew J. Schultz and David A. Kofke "Virial coefficients, equation of state, and solid-fluid coexistence for the soft sphere model", Molecular Physics '''109''' pp. 123-132 (2011)]</ref>
<ref name="Tan">[ </ref>
==Solid phase==
==Solid phase==
<ref>[http://dx.doi.org/10.1080/00268970802603507 Nigel B. Wilding "Freezing parameters of soft spheres", Molecular Physics '''107''' pp. 295-299 (2009)]</ref>
<ref>[http://dx.doi.org/10.1080/00268970802603507 Nigel B. Wilding "Freezing parameters of soft spheres", Molecular Physics '''107''' pp. 295-299 (2009)]</ref>

Revision as of 16:57, 17 January 2011

The soft sphere potential is defined as

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{12}\left(r \right) } is the intermolecular pair potential between two soft spheres separated by a distance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r := |\mathbf{r}_1 - \mathbf{r}_2|} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon } is the interaction strength and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma } is the diameter of the sphere. Frequently the value of is taken to be 12, thus the model effectively becomes the high temperature limit of the Lennard-Jones model [1]. If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\rightarrow \infty} one has the hard sphere model. For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \le 3} no thermodynamically stable phases are found.

Equation of state

The soft-sphere equation of state[2] has recently been studied by Tan, Schultz and Kofke[3] and experssed in terms of Padé approximants. For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=6} one has (Eq. 8):


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_{n=6} = \frac{1 + 7.432255 \rho + 23.854807 \rho^2 + 40.330195 \rho^3 + 34.393896 \rho^4 + 10.723480 \rho^5}{1+ 3.720037 \rho + 4.493218 \rho^2 + 1.554135 \rho^3}}


and for one has (Eq. 9):


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_{n=9} = \frac{1 + 3.098829 \rho + 5.188915 \rho^2 + 5.019851 \rho^3 + 2.673385 \rho^4 + 0.601529 \rho^5}{1+ 0.262771 \rho + 0.168052 \rho^2 - 0.010554 \rho^3}}

Virial coefficients

[3]

Solid phase

[4]

Glass transition

[5]

Transport coefficients

[6]

References