Thermodynamic integration: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎References: Added a new reference concerning errors.)
Line 22: Line 22:
*[[Gibbs-Duhem integration]]
*[[Gibbs-Duhem integration]]
==References==
==References==
<references/>
#[http://dx.doi.org/10.1103/RevModPhys.48.587      J. A. Barker and D. Henderson "What is "liquid"? Understanding the states of matter ", Reviews of Modern Physics '''48''' pp. 587 - 671 (1976)]
#[http://dx.doi.org/10.1103/RevModPhys.48.587      J. A. Barker and D. Henderson "What is "liquid"? Understanding the states of matter ", Reviews of Modern Physics '''48''' pp. 587 - 671 (1976)]
#[http://dx.doi.org/10.1088/0953-8984/20/15/153101  C. Vega, E. Sanz, J. L. F. Abascal and E. G. Noya "Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins", Journal of Physics: Condensed Matter '''20''' 153101 (2008)] (section 4)
#[http://dx.doi.org/10.1088/0953-8984/20/15/153101  C. Vega, E. Sanz, J. L. F. Abascal and E. G. Noya "Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins", Journal of Physics: Condensed Matter '''20''' 153101 (2008)] (section 4)
#[http://dx.doi.org/10.1063/1.3023062 Enrique de Miguel "Estimating errors in free energy calculations from thermodynamic integration using fitted data", Journal of Chemical Physics '''129''' 214112 (2008)]
'''Related reading'''
*[http://dx.doi.org/10.1063/1.3023062 Enrique de Miguel "Estimating errors in free energy calculations from thermodynamic integration using fitted data", Journal of Chemical Physics '''129''' 214112 (2008)]
[[category:classical thermodynamics]]
[[category:classical thermodynamics]]

Revision as of 10:50, 6 October 2010

Thermodynamic integration is used to calculate the difference in the Helmholtz energy function, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} , between two states. The path must be continuous and reversible (Ref. 1 Eq. 3.5)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta A = A(\lambda) - A(\lambda_0) = \int_{\lambda_0}^{\lambda} \left\langle \frac{\partial U(\mathbf{r},\lambda)}{\partial \lambda} \right\rangle_{\lambda} ~\mathrm{d}\lambda}

Isothermal integration

At constant temperature (Ref. 2 Eq. 5):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{A(\rho_2,T)}{Nk_BT} = \frac{A(\rho_1,T)}{Nk_BT} + \int_{\rho_1}^{\rho_2} \frac{p(\rho)}{k_B T \rho^2} ~\mathrm{d}\rho }

Isobaric integration

At constant pressure (Ref. 2 Eq. 6):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{G(T_2,p)}{Nk_BT_2} = \frac{G(T_1,p)}{Nk_BT_1} - \int_{T_1}^{T_2} \frac{H(T)}{Nk_BT^2} ~\mathrm{d}T }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G} is the Gibbs energy function and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H} is the enthalpy.

Isochoric integration

At constant volume (Ref. 2 Eq. 7):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{A(T_2,V)}{Nk_BT_2} = \frac{A(T_1,V)}{Nk_BT_1} - \int_{T_1}^{T_2} \frac{U(T)}{Nk_BT^2} ~\mathrm{d}T }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U} is the internal energy.

See also

References

  1. J. A. Barker and D. Henderson "What is "liquid"? Understanding the states of matter ", Reviews of Modern Physics 48 pp. 587 - 671 (1976)
  2. C. Vega, E. Sanz, J. L. F. Abascal and E. G. Noya "Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins", Journal of Physics: Condensed Matter 20 153101 (2008) (section 4)

Related reading