Ideal gas Helmholtz energy function: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
mNo edit summary
No edit summary
Line 1: Line 1:
From equations  
From equations  
:<math>Q_{NVT}=\frac{1}{N!} \left( \frac{V}{\Lambda^{3}}\right)^N</math>
:<math>Q_{NVT}=\frac{1}{N!} \left( \frac{V}{\Lambda^{3}}\right)^N</math>
and  
for the [[ Ideal gas partition function | canonical ensemble partition function for an ideal gas]], and  
:<math>\left.A\right.=-k_B T \ln Q_{NVT}</math>
:<math>\left.A\right.=-k_B T \ln Q_{NVT}</math>
one has
for the [[Helmholtz energy function]], one has
:<math>A=-k_BT\left(\ln \frac{1}{N!} + N\ln\frac{V}{\Lambda^{3}}\right)</math>
:<math>A=-k_BT\left(\ln \frac{1}{N!} + N\ln\frac{V}{\Lambda^{3}}\right)</math>
::<math>=-k_BT\left(-\ln N! + N\ln\frac{VN}{\Lambda^3N}\right)</math>
::<math>=-k_BT\left(-\ln N! + N\ln\frac{VN}{\Lambda^3N}\right)</math>

Revision as of 16:44, 8 June 2007

From equations

for the canonical ensemble partition function for an ideal gas, and

for the Helmholtz energy function, one has

using Stirling's approximation

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =-k_BT\left( -N\ln N +N + N\ln N - N\ln \Lambda^3 \rho \right)}

one arrives at

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=Nk_BT\left(\ln \Lambda^3 \rho -1 \right)}