Microcanonical ensemble: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
mNo edit summary
mNo edit summary
Line 21: Line 21:
*<math> \left( p \right)^{3n} </math> represents the 3N momenta.
*<math> \left( p \right)^{3n} </math> represents the 3N momenta.


* <math> H \left(p,q\right) </math> represent the Hamiltonian, i.e. the total energy of the system as a function of coordinates and momenta.
* <math> H \left(p,q\right) </math> represent the [[Hamiltonian]], i.e. the total energy of the system as a function of coordinates and momenta.


*<math> \delta \left( x \right) </math> is the [[Dirac delta distribution]]
*<math> \delta \left( x \right) </math> is the [[Dirac delta distribution]]
Line 31: Line 31:
where:
where:


*<math> \left. S \right. </math> is the [[Entropy|entropy]]·
*<math> \left. S \right. </math> is the [[Entropy|entropy]].


*<math> \left. k_B \right. </math> is the [[Boltzmann constant]]
*<math> \left. k_B \right. </math> is the [[Boltzmann constant]]

Revision as of 11:52, 27 February 2007

Ensemble variables

(One component system, 3-dimensional system, ... ):

  • : Number of Particles
  • : Volume
  • : Internal energy (kinetic + potential)

Partition function

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{NVE} = \frac{1}{h^{3N} N!} \int \int d (p)^{3N} d(q)^{3N} \delta ( H(p,q) - E). }

where:

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. h \right. } is the Planck constant
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( q \right)^{3n} } represents the 3N Cartesian position coordinates.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( p \right)^{3n} } represents the 3N momenta.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H \left(p,q\right) } represent the Hamiltonian, i.e. the total energy of the system as a function of coordinates and momenta.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta \left( x \right) } is the Dirac delta distribution

Thermodynamics

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. S = k_B \log Q_{NVE} \right. }

where:

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. S \right. } is the entropy.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. k_B \right. } is the Boltzmann constant

References

  1. D. Frenkel and B. Smit, "Understanding Molecular Simulation: From Algorithms to Applications", Academic Press