Microcanonical ensemble: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
Line 6: Line 6:
* <math> \left. N \right. </math>: Number of Particles
* <math> \left. N \right. </math>: Number of Particles


* <math> \left. V \right. </math>: Volumne
* <math> \left. V \right. </math>: Volume


* <math> \left. E \right. </math>: Internal enerrgy (kinetic + potential)
* <math> \left. E \right. </math>: Internal energy (kinetic + potential)


== Partition function ==  
== Partition function ==  

Revision as of 11:26, 27 February 2007

Microcanonical Ensemble (Clasical statistics):

Ensemble variables

(One component system, 3-dimensional system, ... ):

  • : Number of Particles
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. V \right. } : Volume
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. E \right. } : Internal energy (kinetic + potential)

Partition function

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{NVE} = \frac{1}{h^{3N} N!} \int \int d (p)^{3N} d(q)^{3N} \delta ( H(p,q) - E). }

where:

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. h \right. } is the Planck constant
  • represents the 3N Cartesian position coordinates.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( p \right)^{3n} } represents the 3N momenta.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H \left(p,q\right) } represent the Hamiltonian, i.e. the total energy of the system as a function of coordinates and momenta.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta \left( x \right) } is the Dirac delta function

References

  1. D. Frenkel and B. Smit, "Understanding Molecular Simulation: From Algorithms to Applications", Academic Press