Microcanonical ensemble: Difference between revisions
Jump to navigation
Jump to search
m (→References) |
|||
| Line 6: | Line 6: | ||
* <math> \left. N \right. </math>: Number of Particles | * <math> \left. N \right. </math>: Number of Particles | ||
* <math> \left. V \right. </math>: | * <math> \left. V \right. </math>: Volume | ||
* <math> \left. E \right. </math>: Internal | * <math> \left. E \right. </math>: Internal energy (kinetic + potential) | ||
== Partition function == | == Partition function == | ||
Revision as of 11:26, 27 February 2007
Microcanonical Ensemble (Clasical statistics):
Ensemble variables
(One component system, 3-dimensional system, ... ):
- : Number of Particles
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. V \right. } : Volume
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. E \right. } : Internal energy (kinetic + potential)
Partition function
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{NVE} = \frac{1}{h^{3N} N!} \int \int d (p)^{3N} d(q)^{3N} \delta ( H(p,q) - E). }
where:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. h \right. } is the Planck constant
- represents the 3N Cartesian position coordinates.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( p \right)^{3n} } represents the 3N momenta.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H \left(p,q\right) } represent the Hamiltonian, i.e. the total energy of the system as a function of coordinates and momenta.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta \left( x \right) } is the Dirac delta function
References
- D. Frenkel and B. Smit, "Understanding Molecular Simulation: From Algorithms to Applications", Academic Press