1-dimensional hard rods: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
Line 26: Line 26:
Consider that the particles are ordered according to their label: <math> x_0 < x_1 < x_2 < \cdots < x_{N-1} </math>;  
Consider that the particles are ordered according to their label: <math> x_0 < x_1 < x_2 < \cdots < x_{N-1} </math>;  


taking into account the pair potential we can write the canonical parttion function (configuration integral) of a system of <math> N </math> particles as:
:taking into account the pair potential we can write the canonical parttion function (configuration integral) of a system of <math> N </math> particles as:


: <math>
: <math>
Line 37: Line 37:
Variable change: <math> \left. \omega_k = x_k - (k+\frac{1}{2}) \sigma \right. </math> ; we get:
Variable change: <math> \left. \omega_k = x_k - (k+\frac{1}{2}) \sigma \right. </math> ; we get:


: <math>
<math>
\frac{ Z \left( N,L \right)}{N!} = \int_{0}^{L-N\sigma} d \omega_0  
\frac{ Z \left( N,L \right)}{N!} = \int_{0}^{L-N\sigma} d \omega_0  
\int_{\omega_0}^{L-N\sigma} d \omega_1 \cdots  
\int_{\omega_0}^{L-N\sigma} d \omega_1 \cdots  
Line 52: Line 52:
Q(N,L) = \frac{ (V-N)^N}{\Lambda^N N!}.
Q(N,L) = \frac{ (V-N)^N}{\Lambda^N N!}.
</math>
</math>
== Thermodynamics ==
[[Helmholz energy function]]
: <math> \left. A(N,L,T) = - k_B T \log Q \right. </math>
In the thermodynamic limit (i.e. <math> N \rightarrow \infty; L \rightarrow \infty</math> with <math> \rho = N/L </math> remaining finite:


==References==
==References==

Revision as of 11:47, 27 February 2007

Hard Rods, 1-dimensional system with hard sphere interactions.

The statistical mechanics of this system can be solved exactly (see Ref. 1).

Canonical Ensemble: Configuration Integral

This part could require further improvements

Consider a system of length defined in the range .

Our aim is to compute the partition function of a system of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. N \right. } hard rods of length Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \sigma \right. } .

Model:

  • External Potential; the whole length of the rod must be inside the range:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{0}(x_i) = \left\{ \begin{array}{lll} 0 & ; & \sigma/2 < x < L - \sigma/2 \\ \infty &; & elsewhere. \end{array} \right. }
  • Pair Potential:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V (x_i,x_j) = \left\{ \begin{array}{lll} 0 & ; & |x_i-x_j| > \sigma \\ \infty &; & |x_i-x_j| < \sigma \end{array} \right. }

where is the position of the center of the k-th rod.

Consider that the particles are ordered according to their label: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0 < x_1 < x_2 < \cdots < x_{N-1} } ;

taking into account the pair potential we can write the canonical parttion function (configuration integral) of a system of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N } particles as:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{ Z \left( N,L \right)}{N!} = \int_{\sigma/2}^{L+\sigma/2-N\sigma} d x_0 \int_{x_0+\sigma}^{L+\sigma/2-N\sigma+\sigma} d x_1 \cdots \int_{x_{i-1}+\sigma}^{L+\sigma/2-N\sigma+i \sigma} d x_i \cdots \int_{x_{N-2}+\sigma}^{L+\sigma/2-N\sigma+(N-1)\sigma} d x_{N-1}. }

Variable change: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \omega_k = x_k - (k+\frac{1}{2}) \sigma \right. }  ; we get:

Therefore: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{ Z \left( N,L \right)}{N!} = \frac{ (V-N)^{N} }{N!}. }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q(N,L) = \frac{ (V-N)^N}{\Lambda^N N!}. }

Thermodynamics

Helmholz energy function

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. A(N,L,T) = - k_B T \log Q \right. }

In the thermodynamic limit (i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N \rightarrow \infty; L \rightarrow \infty} with Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \rho =N/L} remaining finite:

References

  1. Lewi Tonks "The Complete Equation of State of One, Two and Three-Dimensional Gases of Hard Elastic Spheres", Physical Review 50 pp. 955- (1936)
  2. L. van Hove "Quelques Propriétés Générales De L'intégrale De Configuration D'un Système De Particules Avec Interaction", Physica, 15 pp. 951-961 (1949)
  3. L. van Hove, "Sur L'intégrale de Configuration Pour Les Systèmes De Particules À Une Dimension", Physica, 16 pp. 137-143 (1950)