Spherical harmonics: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Another slight tidy.)
(added general formula)
 
Line 1: Line 1:
The '''spherical harmonics''' <math>Y_l^m (\theta,\phi)</math> are the angular portion of the solution to [[Laplace's equation]] in spherical coordinates.
The '''spherical harmonics''' <math>Y_l^m (\theta,\phi)</math> are the angular portion of the solution to [[Laplace's equation]] in spherical coordinates.
They are given by
:<math>Y_l^m  (\theta,\phi) =
(-1)^m \sqrt{\frac{2n+1}{4\pi}\frac{(n-m)!}{(n+m)!}}
P^m_n(\cos\theta) e^{i m \phi},</math>
where <math> P^m_n </math> is the [[associated Legendre function]].
The first few spherical harmonics are given by:
The first few spherical harmonics are given by:



Latest revision as of 11:54, 20 June 2008

The spherical harmonics Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_l^m (\theta,\phi)} are the angular portion of the solution to Laplace's equation in spherical coordinates. They are given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_l^m (\theta,\phi) = (-1)^m \sqrt{\frac{2n+1}{4\pi}\frac{(n-m)!}{(n+m)!}} P^m_n(\cos\theta) e^{i m \phi},}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P^m_n } is the associated Legendre function.

The first few spherical harmonics are given by:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_0^0 (\theta,\phi) = \frac{1}{2} \frac{1}{\sqrt{\pi}}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_1^{-1} (\theta,\phi) = \frac{1}{2} \sqrt{\frac{3}{2\pi}} \sin \theta e^{-i\phi} }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_1^0 (\theta,\phi) = \frac{1}{2} \sqrt{\frac{3}{\pi}} \cos \theta }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_1^1 (\theta,\phi) = -\frac{1}{2} \sqrt{\frac{3}{2\pi}} \sin \theta e^{i\phi} }

See also[edit]

References[edit]