Delaunay simplexes: Difference between revisions
Carl McBride (talk | contribs) m (→References: Added a Ref.) |
m (Fixed DOI) |
||
| Line 8: | Line 8: | ||
==References== | ==References== | ||
#Математические основы структурного анализа кристаллов (совместно с А.Д.Александровым и Н.Падуровым), Москва, Матем. литература, 1934 г. | #Математические основы структурного анализа кристаллов (совместно с А.Д.Александровым и Н.Падуровым), Москва, Матем. литература, 1934 г. | ||
#[http://dx.doi.org/10.1007/ | #[http://dx.doi.org/10.1007/11424758_84 A. V. Anikeenko, M. L. Gavrilova and N. N. Medvedev "A Novel Delaunay Simplex Technique for Detection of Crystalline Nuclei in Dense Packings of Spheres", Lecture Notes in Computer Science '''3480''' pp. 816-826 (2005)] | ||
[[category: mathematics]] | [[category: mathematics]] | ||
Revision as of 14:31, 28 February 2008

A Delaunay simplex is the dual of the Voronoi diagram. Delaunay simplexes were developed by Борис Николаевич Делоне. In two-dimensions it is more commonly known as Delaunay triangulation, and in three-dimensions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ({\mathbb R}^3)} , as Delaunay tetrahedralisation.
A Delaunay triangulation fulfills the empty circle property (also called Delaunay property): the circumscribing circle of any facet of the triangulation contains no data point in its interior. For a point set with no subset of four co-circular points the Delaunay triangulation is unique. A similar property holds for tetrahedralisation in three dimensions.
External links
References
- Математические основы структурного анализа кристаллов (совместно с А.Д.Александровым и Н.Падуровым), Москва, Матем. литература, 1934 г.
- A. V. Anikeenko, M. L. Gavrilova and N. N. Medvedev "A Novel Delaunay Simplex Technique for Detection of Crystalline Nuclei in Dense Packings of Spheres", Lecture Notes in Computer Science 3480 pp. 816-826 (2005)