Semi-grand ensembles: Difference between revisions
m (corrections) |
m (still correcting errors) |
||
Line 44: | Line 44: | ||
* Now considering the thermodynamical potential: <math> \beta A - \sum_{i=2}^c \left( N_i \beta \mu_{i1} \right) </math> | * Now considering the thermodynamical potential: <math> \beta A - \sum_{i=2}^c \left( N_i \beta \mu_{i1} \right) </math> | ||
:<math> d \left[ \beta A - \sum_{i=2}^c ( \beta \mu_{i1} N_i ) \right] = E d \beta - \left( \beta p \right) d V + \beta \mu_{1} d N - | :<math> d \left[ \beta A - \sum_{i=2}^c ( \beta \mu_{i1} N_i ) \right] = E d \beta - \left( \beta p \right) d V + \beta \mu_{1} d N - i | ||
\sum_{i=2}^c N_i d \left( \beta \mu_{i1} \right). | |||
</math> | </math> | ||
Revision as of 11:14, 7 September 2007
General features
Semi-grand ensembles are used in Monte Carlo simulation of mixtures. In these ensembles the total number of molecules is fixed, but the composition can change.
Canonical ensemble: fixed volume, temperature and number(s) of molecules
We shall consider a system consisting of c components;. In the canonical ensemble, the differential equation energy for the Helmholtz energy function can be written as:
- ,
where:
- is the Helmholtz energy function
- is the Boltzmann constant
- is the absolute temperature
- is the internal energy
- is the pressure
- is the chemical potential of the species
- is the number of molecules of the species
Semi-grand ensemble at fixed volume and temperature
Consider now that we wish to consider a system with fixed total number of particles,
- ;
but the composition can change, from thermodynamic considerations one can apply a Legendre transform [HAVE TO CHECK ACCURACY] to the differential equation written above in terms of .
- Consider the variable change i.e.:
or,
where .
- Now considering the thermodynamical potential:
Fixed pressure and temperature
In the isothermal-isobaric ensemble: one can write:
where:
- is the Gibbs energy function
Fixed pressure and temperature: Semi-grand ensemble
Following the procedure described above one can write:
- ,
where the new thermodynamical Potential is given by:
Fixed pressure and temperature: Semi-grand ensemble: partition function
In the fixed composition ensemble one has:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{N_i,p,T} = \frac{ \beta p }{\prod_{i=1}^c \left( \Lambda_i^{3N_i} N_i! \right) } \int_{0}^{\infty} dV e^{-\beta p V } V^N \int \left( \prod_{i=1}^c d (R_i^*)^{3N_i} \right) \exp \left[ - \beta U \left( V, (R_1^*)^{3N_1} , \cdots \right) \right]. }