Ideal gas: Energy: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
(link added)
Line 3: Line 3:
:<math>E = -T^2 \left. \frac{\partial (A/T)}{\partial T} \right\vert_{V,N} = kT^2 \left. \frac{\partial \ln Q}{\partial T} \right\vert_{V,N}= NkT^2 \frac{d \ln T^{3/2}}{dT} = \frac{3}{2} NkT</math>
:<math>E = -T^2 \left. \frac{\partial (A/T)}{\partial T} \right\vert_{V,N} = kT^2 \left. \frac{\partial \ln Q}{\partial T} \right\vert_{V,N}= NkT^2 \frac{d \ln T^{3/2}}{dT} = \frac{3}{2} NkT</math>


This energy is all ''kinetic energy'', <math>1/2.kT</math> per degree of freedom. This is because there are no intermolecular forces, thus no potential energy.
This energy is all ''kinetic energy'', <math>1/2 kT</math> per [[degree of freedom]], by [[equipartition]]. This is because there are no intermolecular forces, thus no potential energy.
==References==
==References==
#Terrell L. Hill "An Introduction to Statistical Thermodynamics"  2nd Ed. Dover (1962)  
#Terrell L. Hill "An Introduction to Statistical Thermodynamics"  2nd Ed. Dover (1962)  
[[category: ideal gas]]
[[category: ideal gas]]

Revision as of 13:46, 9 May 2008

The energy of the ideal gas is given by (Hill Eq. 4-16)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E = -T^2 \left. \frac{\partial (A/T)}{\partial T} \right\vert_{V,N} = kT^2 \left. \frac{\partial \ln Q}{\partial T} \right\vert_{V,N}= NkT^2 \frac{d \ln T^{3/2}}{dT} = \frac{3}{2} NkT}

This energy is all kinetic energy, per degree of freedom, by equipartition. This is because there are no intermolecular forces, thus no potential energy.

References

  1. Terrell L. Hill "An Introduction to Statistical Thermodynamics" 2nd Ed. Dover (1962)