Hard ellipsoid model: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 10: Line 10:
The most widely used overlap algorithm is that of Perram and Wertheim:
The most widely used overlap algorithm is that of Perram and Wertheim:
*[http://dx.doi.org/:10.1016/0021-9991(85)90171-8  John W. Perram and M. S. Wertheim "Statistical mechanics of hard ellipsoids. I. Overlap algorithm and the contact function", Journal of Computational Physics  '''58''' pp. 409-416 (1985)]
*[http://dx.doi.org/:10.1016/0021-9991(85)90171-8  John W. Perram and M. S. Wertheim "Statistical mechanics of hard ellipsoids. I. Overlap algorithm and the contact function", Journal of Computational Physics  '''58''' pp. 409-416 (1985)]
==Geometric properties==
The mean radius of curvature is given by (Ref. 2)
:<math>R= \frac{a}{2} \left[  \sqrt{\frac{1+\epsilon_b}{1+\epsilon_c}} + \sqrt \epsilon_c \left\{ \frac{1}{\epsilon_c} F(\varphi , k_1) + E(\varphi,k_1) \right\}\right],
</math>
and the surface area is given by
:<math>S= 2 \pi a^2 \left[  1+  \sqrt {\epsilon_c(1+\epsilon_b)} \left\{ \frac{1}{\epsilon_c} F(\varphi , k_2) + E(\varphi,k_2)\right\} \right],
</math>
where <math>F(\varphi,k)</math> is an [[elliptic integral]] of the first kind and <math>E(\varphi,k)</math> is an elliptic integral of the second kind,
with the amplitude being
:<math>\varphi = \tan^{-1} (\sqrt \epsilon_c),</math>
and the moduli
:<math>k_1= \sqrt{\frac{\epsilon_c-\epsilon_b}{\epsilon_c}},</math>
and
:<math>k_2= \sqrt{\frac{\epsilon_b (1+\epsilon_c)}{\epsilon_c(1+\epsilon_b)}},</math>
where the anisotropy parameters, <math>\epsilon_b</math> and <math>\epsilon_c</math>,  are
:<math>\epsilon_b = \left( \frac{b}{a} \right)^2 -1,</math>
and
:<math>\epsilon_c = \left( \frac{c}{a} \right)^2 -1.</math>
The volume of the ellipsoid is given by the well known
:<math>V = \frac{4 \pi}{3}abc.</math>
==See also==
==See also==
*[[Hard ellipsoid equation of state]]
*[[Hard ellipsoid equation of state]]
==References==
==References==
#[http://dx.doi.org/10.1016/j.fluid.2007.03.026  Carl McBride and Enrique Lomba "Hard biaxial ellipsoids revisited: Numerical results", Fluid Phase Equilibria  '''255''' pp. 37-45 (2007)]
#[http://dx.doi.org/10.1016/j.fluid.2007.03.026  Carl McBride and Enrique Lomba "Hard biaxial ellipsoids revisited: Numerical results", Fluid Phase Equilibria  '''255''' pp. 37-45 (2007)]
#[http://dx.doi.org/10.1063/1.472110    G. S. Singh and B. Kumar  "Geometry of hard ellipsoidal fluids and their virial coefficients", Journal of Chemical Physics '''105''' pp. 2429-2435 (1996)]
[[Category: Models]]
[[Category: Models]]

Revision as of 12:07, 29 June 2007

A prolate ellipsoid.

Interaction Potential

The general ellipsoid, also called a triaxial ellipsoid, is a quadratic surface which is given in Cartesian coordinates by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} define the lengths of the axis.

Overlap algorithm

The most widely used overlap algorithm is that of Perram and Wertheim:

Geometric properties

The mean radius of curvature is given by (Ref. 2)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R= \frac{a}{2} \left[ \sqrt{\frac{1+\epsilon_b}{1+\epsilon_c}} + \sqrt \epsilon_c \left\{ \frac{1}{\epsilon_c} F(\varphi , k_1) + E(\varphi,k_1) \right\}\right], }

and the surface area is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S= 2 \pi a^2 \left[ 1+ \sqrt {\epsilon_c(1+\epsilon_b)} \left\{ \frac{1}{\epsilon_c} F(\varphi , k_2) + E(\varphi,k_2)\right\} \right], }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(\varphi,k)} is an elliptic integral of the first kind and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E(\varphi,k)} is an elliptic integral of the second kind, with the amplitude being

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varphi = \tan^{-1} (\sqrt \epsilon_c),}

and the moduli

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_1= \sqrt{\frac{\epsilon_c-\epsilon_b}{\epsilon_c}},}

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_2= \sqrt{\frac{\epsilon_b (1+\epsilon_c)}{\epsilon_c(1+\epsilon_b)}},}

where the anisotropy parameters, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_b} and , are

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_b = \left( \frac{b}{a} \right)^2 -1,}

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_c = \left( \frac{c}{a} \right)^2 -1.}

The volume of the ellipsoid is given by the well known

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V = \frac{4 \pi}{3}abc.}


See also

References

  1. Carl McBride and Enrique Lomba "Hard biaxial ellipsoids revisited: Numerical results", Fluid Phase Equilibria 255 pp. 37-45 (2007)
  2. G. S. Singh and B. Kumar "Geometry of hard ellipsoidal fluids and their virial coefficients", Journal of Chemical Physics 105 pp. 2429-2435 (1996)