Silicon: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎References: Added a recent publication)
m (→‎References: Added a recent publication)
Line 29: Line 29:
*[http://dx.doi.org/10.1063/1.4843415  Samuel Cajahuaringa, Maurice de Koning and Alex Antonelli "Revisiting dynamics near a liquid-liquid phase transition in Si and Ga: The fragile-to-strong transition", Journal of Chemical Physics '''139''' 224504 (2013)]
*[http://dx.doi.org/10.1063/1.4843415  Samuel Cajahuaringa, Maurice de Koning and Alex Antonelli "Revisiting dynamics near a liquid-liquid phase transition in Si and Ga: The fragile-to-strong transition", Journal of Chemical Physics '''139''' 224504 (2013)]
*[http://dx.doi.org/10.1063/1.4880559  Vishwas V. Vasisht, John Mathew, Shiladitya Sengupta and Srikanth Sastry "Nesting of thermodynamic, structural, and dynamic anomalies in liquid silicon", Journal of Chemical Physics '''141''' 124501 (2014)]
*[http://dx.doi.org/10.1063/1.4880559  Vishwas V. Vasisht, John Mathew, Shiladitya Sengupta and Srikanth Sastry "Nesting of thermodynamic, structural, and dynamic anomalies in liquid silicon", Journal of Chemical Physics '''141''' 124501 (2014)]
*[http://dx.doi.org/10.1063/1.4921137  M. Mayo, S. Shor, E. Yahel and G. Makov "Short range order in elemental liquids of column IV", Journal of Chemical Physics '''142''' 194501 (2015)]




[[category: models]]
[[category: models]]
[[Category: Polyamorphic systems]]
[[Category: Polyamorphic systems]]

Revision as of 12:37, 22 May 2015

This article is a 'stub' page, it has no, or next to no, content. It is here at the moment to help form part of the structure of SklogWiki. If you add sufficient material to this article then please remove the {{Stub-general}} template from this page.

Silicon (Si)

Models of silicon

Stillinger-Weber model

[1]

Tersoff potential

[2]

Quantum

[3]

Melting point

Yoo et al have calculated the melting point to be at zeo pressure [4]. The melting line has also been calculated [5].

Thermal conductivity

Thermal conductivity () [6].

Polyamorphism in silicon

Silicon is a polyamorphic system. [7] [8] [9] [10] [11].

References

  1. Frank H. Stillinger and Thomas A. Weber "Computer simulation of local order in condensed phases of silicon", Physical Review B 31 pp. 5262-5271 (1985)
  2. J. Tersoff "New empirical approach for the structure and energy of covalent systems", Physical Review B 37 pp. 6991-7000 (1988)
  3. M. Kaczmarski, O.N. Bedoya-Martínez, and E.R. Hernández "Phase Diagram of Silicon from Atomistic Simulations", Physical Review Letters 94 p. 095701 (2005)
  4. Soohaeng Yoo, Sotiris S. Xantheas and Xiao Cheng Zeng "The melting temperature of bulk silicon from ab initio molecular dynamics simulations", Chemical Physics Letters 481 pp. 88-90 (2009)
  5. V. S. Dozhdikov, A. Yu. Basharin, and P. R. Levashov "Two-phase simulation of the crystalline silicon melting line at pressures from –1 to 3 GPa", Journal of Chemical Physics 137 054502 (2012)
  6. P. C. Howell "Comparison of molecular dynamics methods and interatomic potentials for calculating the thermal conductivity of silicon", Journal of Chemical Physics 137 224111 (2012)
  7. Sudip K. Deb, Martin Wilding, Maddury Somayazulu and Paul F. McMillan "Pressure-induced amorphization and an amorphous–amorphous transition in densified porous silicon", Nature 414 pp. 528-530 (2001)
  8. Srikanth Sastry and C. Austen Angell "Liquid–liquid phase transition in supercooled silicon", Nature Materials 2 pp. 739 - 743 (2003)
  9. Philippe Beaucage and Normand Mousseau "Liquid–liquid phase transition in Stillinger–Weber silicon", Jorunal of Physics: Condensed Matter 17 pp. 2269-2279 (2005)
  10. N. Jakse and A. Pasturel "Dynamic aspects of the liquid-liquid phase transformation in silicon", Journal of Chemical Physics 129 104503 (2008)
  11. K. M. S. Garcez and A. Antonelli "Pressure effects on the transitions between disordered phases in supercooled liquid silicon", Journal of Chemical Physics 135 204508 (2011)

Related reading