Soft sphere potential: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(Added table of virial coefficients)
(Added values for the melting point)
Line 20: Line 20:
:<math>Z_{n=9} = \frac{1 + 3.098829 \rho + 5.188915 \rho^2 + 5.019851 \rho^3 + 2.673385 \rho^4 + 0.601529 \rho^5}{1+ 0.262771 \rho + 0.168052 \rho^2 - 0.010554 \rho^3}</math>
:<math>Z_{n=9} = \frac{1 + 3.098829 \rho + 5.188915 \rho^2 + 5.019851 \rho^3 + 2.673385 \rho^4 + 0.601529 \rho^5}{1+ 0.262771 \rho + 0.168052 \rho^2 - 0.010554 \rho^3}</math>
==Virial coefficients==
==Virial coefficients==
Tan, Schultz and Kofke<ref name="Tan">[ </ref> have calculated the [[Virial equation of state | virial coefficients]] at <math>k_BT/\epsilon=1.0</math> (Table 1):
Tan, Schultz and Kofke<ref name="Tan"> </ref> have calculated the [[Virial equation of state | virial coefficients]] at <math>k_BT/\epsilon=1.0</math> (Table 1):


:{| border="1"
:{| border="1"
Line 38: Line 38:
| <math>B_8</math>  || -0.074(2)  || 0.071(4) || 0.44(2)
| <math>B_8</math>  || -0.074(2)  || 0.071(4) || 0.44(2)
|}
|}
==Solid phase==
==Melting point==
<ref>[http://dx.doi.org/10.1080/00268970802603507 Nigel B. Wilding "Freezing parameters of soft spheres", Molecular Physics '''107''' pp. 295-299 (2009)]</ref>
For <math>n=12</math>
:{| border="1"
|-
| pressure || <math>\rho_{\mathrm {melting}}</math> || <math>\rho_{\mathrm {freezing}}</math>  || Reference
|- 
| 22.66(1) || 1.195(6) || 1.152(6) || Table 1 <ref>[http://dx.doi.org/10.1080/00268970802603507 Nigel B. Wilding "Freezing parameters of soft spheres", Molecular Physics '''107''' pp. 295-299 (2009)]</ref>
|- 
| 23.24(4) || 1.2035(6) || 1.1602(7) || Table 2 <ref name="Tan"> </ref>
|}
For <math>n=9</math>
:{| border="1"
|-
| pressure || <math>\rho_{\mathrm {melting}}</math> || <math>\rho_{\mathrm {freezing}}</math>  || Reference
|- 
| 36.36(10) || 1.4406(12) || 1.4053(14) || Table 3 <ref name="Tan"> </ref>
|}
For <math>n=6</math>
:{| border="1"
|-
| pressure || <math>\rho_{\mathrm {melting}}</math> || <math>\rho_{\mathrm {freezing}}</math>  || Reference
|- 
| 100.1(3) || 2.320(2) || 2.295(2) || Table 4 <ref name="Tan"> </ref>
|}
==Glass transition==
==Glass transition==
<ref>[http://dx.doi.org/10.1063/1.3266845 D. M. Heyes, S. M. Clarke, and A. C. Brańka "Soft-sphere soft glasses", Journal of Chemical Physics '''131''' 204506 (2009)]</ref>
<ref>[http://dx.doi.org/10.1063/1.3266845 D. M. Heyes, S. M. Clarke, and A. C. Brańka "Soft-sphere soft glasses", Journal of Chemical Physics '''131''' 204506 (2009)]</ref>

Revision as of 12:12, 19 January 2011

The soft sphere potential is defined as

where is the intermolecular pair potential between two soft spheres separated by a distance , is the interaction strength and is the diameter of the sphere. Frequently the value of is taken to be 12, thus the model effectively becomes the high temperature limit of the Lennard-Jones model [1]. If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\rightarrow \infty} one has the hard sphere model. For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \le 3} no thermodynamically stable phases are found.

Equation of state

The soft-sphere equation of state[2] has recently been studied by Tan, Schultz and Kofke[3] and expressed in terms of Padé approximants. For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_BT/\epsilon=1.0} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=6} one has (Eq. 8):



and for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=9} one has (Eq. 9):


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_{n=9} = \frac{1 + 3.098829 \rho + 5.188915 \rho^2 + 5.019851 \rho^3 + 2.673385 \rho^4 + 0.601529 \rho^5}{1+ 0.262771 \rho + 0.168052 \rho^2 - 0.010554 \rho^3}}

Virial coefficients

Tan, Schultz and Kofke[3] have calculated the virial coefficients at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_BT/\epsilon=1.0} (Table 1):

n=12 n=9 n=6
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_3} 3.79106644 4.27563423 5.55199919
3.52761(6) 3.43029(7) 1.44261(4)
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_5} 2.1149(2) 1.08341(7) -1.68834(9)
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_6} 0.7695(2) -0.21449(11) 1.8935(5)
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_7} 0.0908(5) -0.0895(7) -1.700(3)
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_8} -0.074(2) 0.071(4) 0.44(2)

Melting point

For

pressure Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_{\mathrm {melting}}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_{\mathrm {freezing}}} Reference
22.66(1) 1.195(6) 1.152(6) Table 1 [4]
23.24(4) 1.2035(6) 1.1602(7) Table 2 [3]

For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=9}

pressure Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_{\mathrm {melting}}} Reference
36.36(10) 1.4406(12) 1.4053(14) Table 3 [3]

For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=6}

pressure Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_{\mathrm {melting}}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_{\mathrm {freezing}}} Reference
100.1(3) 2.320(2) 2.295(2) Table 4 [3]

Glass transition

[5]

Transport coefficients

[6]

References

This page contains numerical values and/or equations. If you intend to use ANY of the numbers or equations found in SklogWiki in any way, you MUST take them from the original published article or book, and cite the relevant source accordingly.