Spherical harmonics: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(New page: The spherical harmonics <math>Y_l^m (\theta,\phi)</math> are the angular portion of the solution to Laplace's equation in spherical coordinates. ==See also== *[http://mathworld.wolfram...)
 
(added general formula)
 
(5 intermediate revisions by one other user not shown)
Line 1: Line 1:
The spherical harmonics <math>Y_l^m (\theta,\phi)</math> are the angular portion of the solution to [[Laplace's equation]] in spherical coordinates.
The '''spherical harmonics''' <math>Y_l^m (\theta,\phi)</math> are the angular portion of the solution to [[Laplace's equation]] in spherical coordinates.
They are given by
:<math>Y_l^m  (\theta,\phi) =
(-1)^m \sqrt{\frac{2n+1}{4\pi}\frac{(n-m)!}{(n+m)!}}
P^m_n(\cos\theta) e^{i m \phi},</math>
where <math> P^m_n </math> is the [[associated Legendre function]].
 
The first few spherical harmonics are given by:
 
:<math>Y_0^0 (\theta,\phi) = \frac{1}{2} \frac{1}{\sqrt{\pi}}</math>
 
:<math>Y_1^{-1} (\theta,\phi) = \frac{1}{2} \sqrt{\frac{3}{2\pi}} \sin \theta e^{-i\phi} </math>
 
:<math>Y_1^0 (\theta,\phi) = \frac{1}{2} \sqrt{\frac{3}{\pi}} \cos \theta  </math>
 
:<math>Y_1^1 (\theta,\phi) = -\frac{1}{2} \sqrt{\frac{3}{2\pi}} \sin \theta e^{i\phi} </math>
==See also==
==See also==
*[[Wigner D-matrix]]
*[http://mathworld.wolfram.com/SphericalHarmonic.html Spherical Harmonic -- from Wolfram MathWorld]
*[http://mathworld.wolfram.com/SphericalHarmonic.html Spherical Harmonic -- from Wolfram MathWorld]
==References==
*M. E. Rose "Elementary theory of angular momentum", John Wiley & Sons (1967) Appendix III
*[http://dx.doi.org/10.1007/BF01597437 I. Nezbeda, J. Kolafa and S. Labík "The spherical harmonic expansion coefficients and multidimensional integrals in theories of liquids", Czechoslovak Journal of Physics '''39''' pp.  65-79 (1989)]
[[category: mathematics]]
[[category: mathematics]]

Latest revision as of 11:54, 20 June 2008

The spherical harmonics Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_l^m (\theta,\phi)} are the angular portion of the solution to Laplace's equation in spherical coordinates. They are given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_l^m (\theta,\phi) = (-1)^m \sqrt{\frac{2n+1}{4\pi}\frac{(n-m)!}{(n+m)!}} P^m_n(\cos\theta) e^{i m \phi},}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P^m_n } is the associated Legendre function.

The first few spherical harmonics are given by:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_0^0 (\theta,\phi) = \frac{1}{2} \frac{1}{\sqrt{\pi}}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_1^{-1} (\theta,\phi) = \frac{1}{2} \sqrt{\frac{3}{2\pi}} \sin \theta e^{-i\phi} }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_1^0 (\theta,\phi) = \frac{1}{2} \sqrt{\frac{3}{\pi}} \cos \theta }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_1^1 (\theta,\phi) = -\frac{1}{2} \sqrt{\frac{3}{2\pi}} \sin \theta e^{i\phi} }

See also[edit]

References[edit]