Computational implementation of integral equations: Difference between revisions
Carl McBride (talk | contribs) No edit summary |
Carl McBride (talk | contribs) mNo edit summary |
||
| (10 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
Integral equations are solved numerically. | Integral equations are solved numerically. | ||
One has the [[Ornstein-Zernike relation]], <math>\gamma (12)</math> | One has the [[Ornstein-Zernike relation]], <math>\gamma (12)</math> | ||
and a [[ | and a [[closure relations | closure relation]], <math>c_2 (12)</math> (which | ||
incorporates the [[bridge function]] <math>B(12)</math>). | incorporates the [[bridge function]] <math>B(12)</math>). | ||
The numerical solution is iterative; | The numerical solution is iterative; | ||
| Line 46: | Line 46: | ||
====Evaluate==== | ====Evaluate==== | ||
Evaluations of <math>\gamma (12)</math> are performed at the discrete points <math>x_{i_1}x_{i_2},y_j,z_{k_1}z_{k_2}</math> | Evaluations of <math>\gamma (12)</math> are performed at the discrete points <math>x_{i_1}x_{i_2},y_j,z_{k_1}z_{k_2}</math> | ||
where the <math>x_i</math> are the <math>\nu</math> roots of the [[Legendre polynomial]] <math>P_\nu(cos \theta)</math> | where the <math>x_i</math> are the <math>\nu</math> roots of the [[Legendre polynomials |Legendre polynomial]] <math>P_\nu(cos \theta)</math> | ||
where <math>y_j</math> are the <math>\nu</math> roots of the [[Chebyshev polynomial]] <math>T_{\nu}(\ cos \phi)</math> | where <math>y_j</math> are the <math>\nu</math> roots of the [[Chebyshev polynomials |Chebyshev polynomial]] <math>T_{\nu}(\ cos \phi)</math> | ||
and where <math>z_{1_k},z_{2_k}</math> are the <math>\nu</math> roots of the | and where <math>z_{1_k},z_{2_k}</math> are the <math>\nu</math> roots of the Chebyshev polynomial | ||
<math>T_{\nu}(\ cos \chi)</math> | <math>T_{\nu}(\ cos \chi)</math> | ||
thus | thus | ||
| Line 124: | Line 124: | ||
:<math>c_{mns}^{\mu \nu} (r) \rightarrow c_{\mu \nu}^{mnl} (r)</math> | :<math>c_{mns}^{\mu \nu} (r) \rightarrow c_{\mu \nu}^{mnl} (r)</math> | ||
this is done using the Blum transformation | this is done using the Blum transformation (Refs 7, 8 and 9): | ||
:<math>g_{\mu \nu}^{mnl}(r) = \sum_{s=-\min (m,n)}^{\min (m,n)} \left( | :<math>g_{\mu \nu}^{mnl}(r) = \sum_{s=-\min (m,n)}^{\min (m,n)} \left( | ||
| Line 138: | Line 138: | ||
:<math>\tilde{c}_{\mu \nu}^{mnl} (k; l_1 l_2 l n_1 n_2) = 4\pi i^l \int_0^{\infty} c_{\mu \nu}^{mnl} (r; l_1 l_2 l n_1 n_2) J_l (kr) ~r^2 {\rm d}r</math> | :<math>\tilde{c}_{\mu \nu}^{mnl} (k; l_1 l_2 l n_1 n_2) = 4\pi i^l \int_0^{\infty} c_{\mu \nu}^{mnl} (r; l_1 l_2 l n_1 n_2) J_l (kr) ~r^2 {\rm d}r</math> | ||
(see Blum and Torruella Eq. 5.6 | (see Blum and Torruella Eq. 5.6 in Ref. 7 or Lado Eq. 39 in Ref. 3), | ||
where <math>J_l(x)</math> is a [[Bessel function]] of order <math>l</math>. | where <math>J_l(x)</math> is a [[Bessel functions |Bessel function]] of order <math>l</math>. | ||
`step-down' operations can be performed by way of sin and cos operations | `step-down' operations can be performed by way of sin and cos operations | ||
of Fourier transforms, see Eqs. 49a, 49b, 50 of Lado | of Fourier transforms, see Eqs. 49a, 49b, 50 of Lado Ref. 3. | ||
The Fourier-Bessel transform is also known as a '''Hankel transform'''. | The Fourier-Bessel transform is also known as a '''Hankel transform'''. | ||
It is equivalent to a two-dimensional Fourier transform with a radially symmetric integral kernel. | It is equivalent to a two-dimensional Fourier transform with a radially symmetric integral kernel. | ||
| Line 149: | Line 149: | ||
:<math>f(r)=2\pi \int_0^\infty g(q) J_0(2 \pi qr)q ~{\rm d}q</math> | :<math>f(r)=2\pi \int_0^\infty g(q) J_0(2 \pi qr)q ~{\rm d}q</math> | ||
====Conversion from the spatial reference frame back to the axial reference frame==== | ====Conversion from the spatial reference frame back to the axial reference frame==== | ||
| Line 170: | Line 169: | ||
:<math>\tilde{\gamma}(k)= \frac{\rho \tilde{c}_2 (k)^2}{1- \rho \tilde{c}_2 (k)}</math> | :<math>\tilde{\gamma}(k)= \frac{\rho \tilde{c}_2 (k)^2}{1- \rho \tilde{c}_2 (k)}</math> | ||
For molecular fluids (see Eq. 19 of Lado | For molecular fluids (see Eq. 19 of Lado Ref. 3) | ||
:<math>\tilde{{\mathbf S}}_{m}(k) = (-1)^{m}\rho \left[{\mathbf I} - (-1)^{m} \rho \tilde{\mathbf C}_{m}(k) \right]^{-1} \tilde{\mathbf C}_{m}(k)\tilde{\mathbf C}_{m}(k)</math> | |||
where <math>\tilde{{\mathbf S}}_{m}(k)</math> and <math>\tilde{\mathbf C}_{m}(k)</math> are matrices | |||
</math> | |||
with elements <math>\tilde S_{l_1 l_2 m}(k), \tilde{C}_{l_1 l_2 m}(k), l_1,l_2 \geq m</math>. | with elements <math>\tilde S_{l_1 l_2 m}(k), \tilde{C}_{l_1 l_2 m}(k), l_1,l_2 \geq m</math>. | ||
For mixtures of simple fluids (see Ref. 10 Juan Antonio Anta PhD thesis pp. 107--109): | |||
:<math>\tilde{\Gamma}(k) = {\mathbf D} \left[{\mathbf I} - {\mathbf D} \tilde{\mathbf C}(k)\right]^{-1} \tilde{\mathbf C}(k)\tilde{\mathbf C}(k)</math> | |||
===Conversion back from Fourier space to Real space=== | ===Conversion back from Fourier space to Real space=== | ||
<math>\tilde{\gamma}_{mns}^{\mu \nu} (k) \rightarrow \gamma_{mns}^{\mu \nu} (r)</math> | :<math>\tilde{\gamma}_{mns}^{\mu \nu} (k) \rightarrow \gamma_{mns}^{\mu \nu} (r)</math> | ||
(basically the inverse of step 2). | (basically the inverse of step 2). | ||
====Axial reference frame to spatial reference frame==== | ====Axial reference frame to spatial reference frame==== | ||
:<math>\tilde{\gamma}_{mns}^{\mu \nu} (k) \rightarrow \tilde{\gamma}^{mnl}_{\mu \nu} (k)</math> | :<math>\tilde{\gamma}_{mns}^{\mu \nu} (k) \rightarrow \tilde{\gamma}^{mnl}_{\mu \nu} (k)</math> | ||
====Inverse Fourier-Bessel transform==== | ====Inverse Fourier-Bessel transform==== | ||
:<math>\tilde{\gamma}^{mnl}_{\mu \nu} (k) \rightarrow \gamma^{mnl}_{\mu \nu} (r)</math> | :<math>\tilde{\gamma}^{mnl}_{\mu \nu} (k) \rightarrow \gamma^{mnl}_{\mu \nu} (r)</math> | ||
'Step-up' operations are given by Eq. 53 of Ref. 3. The inverse Hankel transform is | |||
:<math>\gamma(r;l_1 l_2 l n_1 n_2)= \frac{1}{2 \pi^2 i^l} \int_0^\infty \tilde{\gamma}(k;l_1 l_2 l n_1 n_2) J_l (kr) ~k^2 {\rm d}k</math> | :<math>\gamma(r;l_1 l_2 l n_1 n_2)= \frac{1}{2 \pi^2 i^l} \int_0^\infty \tilde{\gamma}(k;l_1 l_2 l n_1 n_2) J_l (kr) ~k^2 {\rm d}k</math> | ||
====Change from spatial reference frame back to axial reference frame==== | ====Change from spatial reference frame back to axial reference frame==== | ||
:<math>\gamma^{mnl}_{\mu \nu} (r) \rightarrow \gamma_{mns}^{\mu \nu} (r)</math>. | :<math>\gamma^{mnl}_{\mu \nu} (r) \rightarrow \gamma_{mns}^{\mu \nu} (r)</math>. | ||
==Ng acceleration== | ==Ng acceleration== | ||
*[http://dx.doi.org/10.1063/1.1682399 Kin-Chue Ng "Hypernetted chain solutions for the classical one-component plasma up to Gamma=7000", Journal of Chemical Physics '''61''' pp. 2680-2689 (1974)] | *[http://dx.doi.org/10.1063/1.1682399 Kin-Chue Ng "Hypernetted chain solutions for the classical one-component plasma up to Gamma=7000", Journal of Chemical Physics '''61''' pp. 2680-2689 (1974)] | ||
| Line 197: | Line 197: | ||
*[http://dx.doi.org/10.1016/0010-4655(70)90034-2 Taro Tamura "Angular momentum coupling coefficients", Computer Physics Communications '''1''' pp. 337-342 (1970)] | *[http://dx.doi.org/10.1016/0010-4655(70)90034-2 Taro Tamura "Angular momentum coupling coefficients", Computer Physics Communications '''1''' pp. 337-342 (1970)] | ||
*[http://dx.doi.org/10.1016/0010-4655(71)90030-0 J. G. Wills "On the evaluation of angular momentum coupling coefficients", omputer Physics Communications '''2''' pp. 381-382 (1971)] | *[http://dx.doi.org/10.1016/0010-4655(71)90030-0 J. G. Wills "On the evaluation of angular momentum coupling coefficients", omputer Physics Communications '''2''' pp. 381-382 (1971)] | ||
==References== | ==References== | ||
#[http://dx.doi.org/10.1080/00268977900102861 M. J. Gillan "A new method of solving the liquid structure integral equations" Molecular Physics '''38''' pp. 1781-1794 (1979)] | #[http://dx.doi.org/10.1080/00268977900102861 M. J. Gillan "A new method of solving the liquid structure integral equations" Molecular Physics '''38''' pp. 1781-1794 (1979)] | ||
| Line 217: | Line 204: | ||
#[http://dx.doi.org/10.1080/00268978200100222 F. Lado "Integral equations for fluids of linear molecules III. Orientational ordering", Molecular Physics '''47''' pp. 313-317 (1982)] | #[http://dx.doi.org/10.1080/00268978200100222 F. Lado "Integral equations for fluids of linear molecules III. Orientational ordering", Molecular Physics '''47''' pp. 313-317 (1982)] | ||
#[http://dx.doi.org/10.1080/00268978900101981 Enrique Lomba "An efficient procedure for solving the reference hypernetted chain equation (RHNC) for simple fluids" Molecular Physics '''68''' pp. 87-95 (1989)] | #[http://dx.doi.org/10.1080/00268978900101981 Enrique Lomba "An efficient procedure for solving the reference hypernetted chain equation (RHNC) for simple fluids" Molecular Physics '''68''' pp. 87-95 (1989)] | ||
#[http://dx.doi.org/10.1063/1.1676864 L. Blum and A. J. Torruella "Invariant Expansion for Two-Body Correlations: Thermodynamic Functions, Scattering, and the Ornstein—Zernike Equation", Journal of Chemical Physics '''56''' pp. pp. 303-310 (1972)] | |||
#[http://dx.doi.org/10.1063/1.1678503 L. Blum "Invariant Expansion. II. The Ornstein-Zernike Equation for Nonspherical Molecules and an Extended Solution to the Mean Spherical Model", Journal of Chemical Physics '''57''' pp. 1862-1869 (1972)] | |||
#[http://dx.doi.org/10.1063/1.1679655 L. Blum "Invariant expansion III: The general solution of the mean spherical model for neutral spheres with electostatic interactions", Journal of Chemical Physics '''58''' pp. 3295-3303 (1973)] | |||
#[http://dx.doi.org/10.1063/1.454286 P. G. Kusalik and G. N. Patey " On the molecular theory of aqueous electrolyte solutions. I. The solution of the RHNC approximation for models at finite concentration", Journal of Chemical Physics '''88''' pp. 7715-7738 (1988)] | |||
[[category: integral equations]] | [[category: integral equations]] | ||
Latest revision as of 15:57, 31 January 2008
Integral equations are solved numerically. One has the Ornstein-Zernike relation, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma (12)} and a closure relation, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_2 (12)} (which incorporates the bridge function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(12)} ). The numerical solution is iterative;
- trial solution for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma (12)}
- calculate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_2 (12)}
- use the Ornstein-Zernike relation to generate a new Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma (12)} etc.
Note that the value of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_2 (12)} is local, i.e. the value of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_2 (12)} at a given point is given by the value of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma (12)} at this point. However, the Ornstein-Zernike relation is non-local. The way to convert the Ornstein-Zernike relation into a local equation is to perform a (fast) Fourier transform (FFT). Note: convergence is poor for liquid densities. (See Ref.s 1 to 6).
Picard iteration[edit]
Picard iteration generates a solution of an initial value problem for an ordinary differential equation (ODE) using fixed-point iteration. Here are the four steps used to solve integral equations:
Closure relation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma_{mns}^{\mu \nu} (r) \rightarrow c_{mns}^{\mu \nu} (r)} [edit]
(Note: for linear fluids Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu = \nu =0} )
Perform the summation[edit]
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(12)=g(r_{12},\omega_1,\omega_2)=\sum_{mns\mu \nu} g_{mns}^{\mu \nu}(r_{12}) \Psi_{\mu \nu s}^{mn}(\omega_1,\omega_2)}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r_{12}} is the separation between molecular centers and the sets of Euler angles needed to specify the orientations of the two molecules, with
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Psi_{\mu \nu s}^{mn}(\omega_1,\omega_2) = \sqrt{(2m+1)(2n+1)} \mathcal{D}_{s \mu}^m (\omega_1) \mathcal{D}_{\overline{s} \nu}^n (\omega_2)}
with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{s} = -s} .
Define the variables[edit]
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. x_1 \right.= \cos \theta_1}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. x_2\right.= \cos \theta_2}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.z_{1}\right.=\cos \chi _{1}}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. z_2 \right.= \cos \chi_2}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. y\right.= \cos \phi_{12}}
Thus
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \gamma(12) \right. =\gamma (r,x_1x_2,y,z_1z_2)} .
Evaluate[edit]
Evaluations of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma (12)} are performed at the discrete points Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{i_1}x_{i_2},y_j,z_{k_1}z_{k_2}} where the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_i} are the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu} roots of the Legendre polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_\nu(cos \theta)} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_j} are the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu} roots of the Chebyshev polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_{\nu}(\ cos \phi)} and where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z_{1_k},z_{2_k}} are the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu} roots of the Chebyshev polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_{\nu}(\ cos \chi)} thus
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma(r,x_{1_i},x_{2_i},j,z_{1_k},z_{2_k})= \sum_{\nu , \mu , s = -M }^M \sum_{m=L_2}^M \sum_{n=L_1}^M \gamma_{mns}^{\mu \nu} (r) \hat{d}_{s \mu}^m (x_{1_i}) \hat{d}_{\overline{s} \nu}^n (x_{2_i}) e_s(j) e_{\mu} (z_{1_k}) e_{\nu} (z_{2_k})}
where
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{d}_{s \mu}^m (x) = (2m+1)^{1/2} d_{s \mu}^m(\theta)}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_{s \mu}^m(\theta)}
is the angular, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta}
, part of the
rotation matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{D}_{s \mu}^m (\omega)}
,
and
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. e_s(y) \right.=\exp(is\phi)}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. e_{\mu}(z) \right.= \exp(i\mu \chi)}
For the limits in the summations
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. L_1 \right.= \max (s,\nu_1)}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. L_2 \right.= \max (s,\nu_2)}
The above equation constitutes a separable five-dimensional transform. To rapidly evaluate this expression it is broken down into five one-dimensional transforms:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma_{l_2m}^{n_1n_2}(r,x_{1_i})=\sum_{l_1=L_1}^M \gamma_{l_1 l_2 m}^{n_1 n_2}(r) \hat{d}_{m n_1}^{l_1} (x_{1_i})}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma_{m}^{n_1n_2}(r,x_{1_i},x_{2_i})=\sum_{l_2=L_2}^M \gamma_{l_2 m}^{n_1 n_2}(r,x_{1_i}) \hat{d}_{\overline{m} n_2}^{l_2} (x_{2_i})}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma^{n_1n_2}(r,x_{1_i},x_{2_i},j)=\sum_{m=-M}^M \gamma_{m}^{n_1 n_2}(r,x_{1_i},x_{2_i}) e_m(j)}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma^{n_2}(r,x_{1_i},x_{2_i},z_{1_k})=\sum_{n_1=-M}^M \gamma^{n_1 n_2}(r,x_{1_i},x_{2_i},j) e_{n_1}(z_{1_k})}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma(r,x_{1_i},x_{2_i},z_{1_k},z_{2_k})=\sum_{n_2=-M}^M \gamma^{n_2}(r,x_{1_i},x_{2_i},j,z_{1_k}) e_{n_2}(z_{2_k})}
Operations involving the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e_m(y)} and basis functions are performed in complex arithmetic. The sum of these operations is asymptotically smaller than the previous expression and thus constitutes a ``fast separable transform". Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle NG} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} are parameters; Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle NG} is the number of nodes in the Gauss integration, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} the the max index in the truncated rotational invariants expansion.
Integrate over angles [edit]
Use Gauss-Legendre quadrature for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_1} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_2} Use Gauss-Chebyshev quadrature for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z_1} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z_2} . Thus
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{mns}^{\mu \nu} (r) = w^3 \sum_{x_{1_i},x_{2_i},j,z_{1_k},z_{2_k}=1}^{NG} w_{i_1}w_{i_2}c_2(r,x_{1_i},x_{2_i},j,z_{1_k},z_{2_k}) \hat{d}_{s \mu}^m (x_{1_i}) \hat{d}_{\overline{s} \nu}^n (x_{2_i}) e_{\overline{s}}(j) e_{\overline{\mu}} (z_{1_k}) e_{\overline{\nu}} (z_{2_k})}
where the Gauss-Legendre quadrature weights are given by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w_i= \frac{1}{(1-x_i^2)}[P_{NG}^{'} (x_i)]^2}
while the Gauss-Chebyshev quadrature has the constant weight
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w=\frac{1}{NG}}
Perform FFT from Real to Fourier space Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{mns}^{\mu \nu} (r) \rightarrow \tilde{c}_{mns}^{\mu \nu} (k)} [edit]
This is non-trivial and is undertaken in three steps:
Conversion from axial reference frame to spatial reference frame[edit]
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{mns}^{\mu \nu} (r) \rightarrow c_{\mu \nu}^{mnl} (r)}
this is done using the Blum transformation (Refs 7, 8 and 9):
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g_{\mu \nu}^{mnl}(r) = \sum_{s=-\min (m,n)}^{\min (m,n)} \left( \begin{array}{ccc} m&n&l\\ s&\overline{s}&0 \end{array} \right)g_{mns}^{\mu \nu} (r)}
Fourier-Bessel Transforms[edit]
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{\mu \nu}^{mnl} (r) \rightarrow \tilde{c}_{\mu \nu}^{mnl} (k)}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{c}_{\mu \nu}^{mnl} (k; l_1 l_2 l n_1 n_2) = 4\pi i^l \int_0^{\infty} c_{\mu \nu}^{mnl} (r; l_1 l_2 l n_1 n_2) J_l (kr) ~r^2 {\rm d}r}
(see Blum and Torruella Eq. 5.6 in Ref. 7 or Lado Eq. 39 in Ref. 3), where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_l(x)} is a Bessel function of order Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l} . `step-down' operations can be performed by way of sin and cos operations of Fourier transforms, see Eqs. 49a, 49b, 50 of Lado Ref. 3. The Fourier-Bessel transform is also known as a Hankel transform. It is equivalent to a two-dimensional Fourier transform with a radially symmetric integral kernel.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(q)=2\pi \int_0^\infty f(r) J_0(2 \pi qr)r ~{\rm d}r}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(r)=2\pi \int_0^\infty g(q) J_0(2 \pi qr)q ~{\rm d}q}
Conversion from the spatial reference frame back to the axial reference frame[edit]
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{c}_{\mu \nu}^{mnl} (k) \rightarrow \tilde{c}_{mns}^{\mu \nu} (k) }
this is done using the Blum transformation
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g_{mns}^{\mu \nu} (r) = \sum_{l=|m-n|}^{m+n} \left( \begin{array}{ccc} m&n&l\\ s&\overline{s}&0 \end{array} \right) g_{\mu \nu}^{mnl}(r)}
Ornstein-Zernike relation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{c}_{mns}^{\mu \nu} (k) \rightarrow \tilde{\gamma}_{mns}^{\mu \nu} (k)} [edit]
For simple fluids:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{\gamma}(k)= \frac{\rho \tilde{c}_2 (k)^2}{1- \rho \tilde{c}_2 (k)}}
For molecular fluids (see Eq. 19 of Lado Ref. 3)
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{{\mathbf S}}_{m}(k) = (-1)^{m}\rho \left[{\mathbf I} - (-1)^{m} \rho \tilde{\mathbf C}_{m}(k) \right]^{-1} \tilde{\mathbf C}_{m}(k)\tilde{\mathbf C}_{m}(k)}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{{\mathbf S}}_{m}(k)} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{\mathbf C}_{m}(k)} are matrices with elements Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde S_{l_1 l_2 m}(k), \tilde{C}_{l_1 l_2 m}(k), l_1,l_2 \geq m} .
For mixtures of simple fluids (see Ref. 10 Juan Antonio Anta PhD thesis pp. 107--109):
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{\Gamma}(k) = {\mathbf D} \left[{\mathbf I} - {\mathbf D} \tilde{\mathbf C}(k)\right]^{-1} \tilde{\mathbf C}(k)\tilde{\mathbf C}(k)}
Conversion back from Fourier space to Real space[edit]
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{\gamma}_{mns}^{\mu \nu} (k) \rightarrow \gamma_{mns}^{\mu \nu} (r)}
(basically the inverse of step 2).
Axial reference frame to spatial reference frame[edit]
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{\gamma}_{mns}^{\mu \nu} (k) \rightarrow \tilde{\gamma}^{mnl}_{\mu \nu} (k)}
Inverse Fourier-Bessel transform[edit]
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{\gamma}^{mnl}_{\mu \nu} (k) \rightarrow \gamma^{mnl}_{\mu \nu} (r)}
'Step-up' operations are given by Eq. 53 of Ref. 3. The inverse Hankel transform is
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma(r;l_1 l_2 l n_1 n_2)= \frac{1}{2 \pi^2 i^l} \int_0^\infty \tilde{\gamma}(k;l_1 l_2 l n_1 n_2) J_l (kr) ~k^2 {\rm d}k}
Change from spatial reference frame back to axial reference frame[edit]
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma^{mnl}_{\mu \nu} (r) \rightarrow \gamma_{mns}^{\mu \nu} (r)} .
Ng acceleration[edit]
Angular momentum coupling coefficients[edit]
- Taro Tamura "Angular momentum coupling coefficients", Computer Physics Communications 1 pp. 337-342 (1970)
- J. G. Wills "On the evaluation of angular momentum coupling coefficients", omputer Physics Communications 2 pp. 381-382 (1971)
References[edit]
- M. J. Gillan "A new method of solving the liquid structure integral equations" Molecular Physics 38 pp. 1781-1794 (1979)
- Stanislav Labík, Anatol Malijevský and Petr Voncaronka "A rapidly convergent method of solving the OZ equation", Molecular Physics 56 pp. 709-715 (1985)
- F. Lado "Integral equations for fluids of linear molecules I. General formulation", Molecular Physics 47 pp. 283-298 (1982)
- F. Lado "Integral equations for fluids of linear molecules II. Hard dumbell solutions", Molecular Physics 47 pp. 299-311 (1982)
- F. Lado "Integral equations for fluids of linear molecules III. Orientational ordering", Molecular Physics 47 pp. 313-317 (1982)
- Enrique Lomba "An efficient procedure for solving the reference hypernetted chain equation (RHNC) for simple fluids" Molecular Physics 68 pp. 87-95 (1989)
- L. Blum and A. J. Torruella "Invariant Expansion for Two-Body Correlations: Thermodynamic Functions, Scattering, and the Ornstein—Zernike Equation", Journal of Chemical Physics 56 pp. pp. 303-310 (1972)
- L. Blum "Invariant Expansion. II. The Ornstein-Zernike Equation for Nonspherical Molecules and an Extended Solution to the Mean Spherical Model", Journal of Chemical Physics 57 pp. 1862-1869 (1972)
- L. Blum "Invariant expansion III: The general solution of the mean spherical model for neutral spheres with electostatic interactions", Journal of Chemical Physics 58 pp. 3295-3303 (1973)
- P. G. Kusalik and G. N. Patey " On the molecular theory of aqueous electrolyte solutions. I. The solution of the RHNC approximation for models at finite concentration", Journal of Chemical Physics 88 pp. 7715-7738 (1988)