Stirling's approximation: Difference between revisions
No edit summary |
Carl McBride (talk | contribs) (Added Gosper’s formula) |
||
| (12 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
James Stirling (1692-1770, | '''Stirling's approximation''' is named after the Scottish mathematician James Stirling (1692-1770)<ref>J. Stirling "Methodus differentialis, sive tractatus de summation et interpolation serierum infinitarium", London (1730). English translation by J. Holliday "The Differential Method: A Treatise of the Summation and Interpolation of Infinite Series" (1749)</ref>. | ||
:<math>\left.\ln N!\right. = \ln 1 + \ln 2 + \ln 3 + ... + \ln N = \sum_{k=1}^N \ln k</math> | :<math>\left.\ln N!\right. = \ln 1 + \ln 2 + \ln 3 + ... + \ln N = \sum_{k=1}^N \ln k .</math> | ||
using [http://en.wikipedia.org/wiki/Euler-Maclaurin_formula Euler-MacLaurin formula] one has | |||
:<math>\sum_{k=1}^N \ln k=\int_1^N \ln x\,dx+\sum_{k=1}^p\frac{B_{2k}}{2k(2k-1)}\left(\frac{1}{n^{2k-1}}-1\right)+R</math> | :<math>\sum_{k=1}^N \ln k=\int_1^N \ln x\,dx+\sum_{k=1}^p\frac{B_{2k}}{2k(2k-1)}\left(\frac{1}{n^{2k-1}}-1\right)+R ,</math> | ||
where ''B''<sub>1</sub> = −1/2, ''B''<sub>2</sub> = 1/6, ''B''<sub>3</sub> = 0, ''B''<sub>4</sub> = −1/30, ''B''<sub>5</sub> = 0, ''B''<sub>6</sub> = 1/42, ''B''<sub>7</sub> = 0, ''B''<sub>8</sub> = −1/30, ... are the [http://en.wikipedia.org/wiki/Bernoulli_numbers Bernoulli numbers], and ''R'' is an error term which is normally small for suitable values of ''p''. | where ''B''<sub>1</sub> = −1/2, ''B''<sub>2</sub> = 1/6, ''B''<sub>3</sub> = 0, ''B''<sub>4</sub> = −1/30, ''B''<sub>5</sub> = 0, ''B''<sub>6</sub> = 1/42, ''B''<sub>7</sub> = 0, ''B''<sub>8</sub> = −1/30, ... are the [http://en.wikipedia.org/wiki/Bernoulli_numbers Bernoulli numbers], and ''R'' is an error term which is normally small for suitable values of ''p''. | ||
Then, for large ''N'', | |||
:<math>\ln N! \sim \int_1^N \ln x\,dx \sim N \ln N -N .</math> | |||
after some further manipulation one arrives at (apparently Stirling's contribution was the prefactor of <math>\sqrt{2 \pi}</math>) | |||
:<math>N! = \sqrt{2 \pi N} \; N^{N} e^{-N} e^{\lambda_N}</math> | |||
where | |||
:<math>\frac{1}{12N+1} < \lambda_N < \frac{1}{12N}.</math> | |||
:<math> | For example: | ||
{| border="1" | |||
|- | |||
| N || N! (exact) || N! (Stirling) || Error (%) | |||
|- | |||
|1 || 1 || 0.92213700 || 8.44 | |||
|- | |||
|2 || 2 || 1.91900435 || 4.22 | |||
|- | |||
|3 || 6 || 5.83620959 || 2.81 | |||
|- | |||
|4 || 24 || 23.5061751 || 2.10 | |||
|- | |||
|5 || 120 || 118.019168 || 1.67 | |||
|- | |||
|6 || 720 || 710.078185 || 1.40 | |||
|- | |||
|7 || 5040 || 4980.39583 || 1.20 | |||
|- | |||
|8 || 40320 || 39902.3955 || 1.05 | |||
|- | |||
|9 || 362880|| 359536.873 || 0.93 | |||
|- | |||
|10 || 3628800 || 3598695.62 || 0.84 | |||
|} | |||
When one is dealing with numbers of the order of the [[Avogadro constant ]](<math>10^{23}</math>) this formula is essentially exact. | |||
In [[Computer simulation techniques | computer simulations]] the number of atoms or molecules (N) is invariably greater than 100; for N=100 the | |||
percentage error is approximately 0.083%. | |||
==Gosper’s formula== | |||
Gosper’s formula <ref>[http://www.pnas.org/content/75/1/40 R. William Gosper, Jr. "Decision procedure for indefinite hypergeometric summation", PNAS '''75''' pp. 40-42 (1978)]</ref><ref>[http://dx.doi.org/10.1016/j.amc.2009.12.013 Cristinel Mortici "Best estimates of the generalized Stirling formula", Applied Mathematics and Computation '''215''' pp. 4044-4048 (2010)]</ref>: | |||
:<math>n! \approx \sqrt{2 \pi \left( n + \frac{1}{6} \right)} \; \left( \frac{n}{e} \right)^n</math> | |||
Which results in: | |||
{| border="1" | |||
|- | |||
| N || N! (exact) || N! (Gosper) | |||
|- | |||
|1 || 1 || 0.99602180 | |||
|- | |||
|2 || 2 || 1.99736305 | |||
|- | |||
|3 || 6 || 5.99613535 | |||
|- | |||
|4 || 24 || 23.9908895 | |||
|- | |||
|5 || 120 || 119.970030 | |||
|- | |||
|6 || 720 || 719.872829 | |||
|- | |||
|7 || 5040 || 5039.33747 | |||
|- | |||
|8 || 40320 || 40315.9028 | |||
|- | |||
|9 || 362880 || 362850.646 | |||
|- | |||
|10 || 3628800 || 3628560.82 | |||
|} | |||
==Applications in statistical mechanics== | |||
*[[Ideal gas Helmholtz energy function]] | |||
==References== | |||
<references/> | |||
[[Category: Mathematics]] | [[Category: Mathematics]] | ||
Latest revision as of 12:33, 31 January 2011
Stirling's approximation is named after the Scottish mathematician James Stirling (1692-1770)[1].
using Euler-MacLaurin formula one has
where B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, B5 = 0, B6 = 1/42, B7 = 0, B8 = −1/30, ... are the Bernoulli numbers, and R is an error term which is normally small for suitable values of p.
Then, for large N,
after some further manipulation one arrives at (apparently Stirling's contribution was the prefactor of )
where
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{12N+1} < \lambda_N < \frac{1}{12N}.}
For example:
| N | N! (exact) | N! (Stirling) | Error (%) |
| 1 | 1 | 0.92213700 | 8.44 |
| 2 | 2 | 1.91900435 | 4.22 |
| 3 | 6 | 5.83620959 | 2.81 |
| 4 | 24 | 23.5061751 | 2.10 |
| 5 | 120 | 118.019168 | 1.67 |
| 6 | 720 | 710.078185 | 1.40 |
| 7 | 5040 | 4980.39583 | 1.20 |
| 8 | 40320 | 39902.3955 | 1.05 |
| 9 | 362880 | 359536.873 | 0.93 |
| 10 | 3628800 | 3598695.62 | 0.84 |
When one is dealing with numbers of the order of the Avogadro constant (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 10^{23}} ) this formula is essentially exact. In computer simulations the number of atoms or molecules (N) is invariably greater than 100; for N=100 the percentage error is approximately 0.083%.
Gosper’s formula[edit]
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n! \approx \sqrt{2 \pi \left( n + \frac{1}{6} \right)} \; \left( \frac{n}{e} \right)^n}
Which results in:
| N | N! (exact) | N! (Gosper) |
| 1 | 1 | 0.99602180 |
| 2 | 2 | 1.99736305 |
| 3 | 6 | 5.99613535 |
| 4 | 24 | 23.9908895 |
| 5 | 120 | 119.970030 |
| 6 | 720 | 719.872829 |
| 7 | 5040 | 5039.33747 |
| 8 | 40320 | 40315.9028 |
| 9 | 362880 | 362850.646 |
| 10 | 3628800 | 3628560.82 |
Applications in statistical mechanics[edit]
References[edit]
- ↑ J. Stirling "Methodus differentialis, sive tractatus de summation et interpolation serierum infinitarium", London (1730). English translation by J. Holliday "The Differential Method: A Treatise of the Summation and Interpolation of Infinite Series" (1749)
- ↑ R. William Gosper, Jr. "Decision procedure for indefinite hypergeometric summation", PNAS 75 pp. 40-42 (1978)
- ↑ Cristinel Mortici "Best estimates of the generalized Stirling formula", Applied Mathematics and Computation 215 pp. 4044-4048 (2010)