Building up a face centered cubic lattice: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
mNo edit summary  | 
				Carl McBride (talk | contribs)  m (Undo revision 12942 by 188.123.231.96 (talk))  | 
				||
| (7 intermediate revisions by 5 users not shown) | |||
| Line 1: | Line 1: | ||
{{Jmol_general|Face_centered_cubic_lattice.xyz|A face centered cubic lattice}}  | |||
* Consider:  | * Consider:  | ||
# a   | # a cubic simulation box whose sides are of length <math>\left. L  \right. </math>  | ||
# a number of lattice positions, <math> \left. M \right. </math> given by  | # a number of lattice positions, <math> \left. M \right. </math> given by <math> \left. M = 4 m^3    \right. </math>,  | ||
with <math> m </math> being a positive integer  | |||
* The <math> \left. M \right. </math> positions are those given by:  | * The <math> \left. M \right. </math> positions are those given by:  | ||
<math>  | :<math>  | ||
\left\{ \begin{array}{l}  | \left\{ \begin{array}{l}  | ||
x_a = i_a \times (\delta l)  \\  | x_a = i_a \times (\delta l)  \\  | ||
| Line 18: | Line 16: | ||
</math>  | </math>  | ||
where the indices of a given valid site are integer   | where the indices of a given valid site are  integer numbers that must fulfill the following criteria  | ||
* <math> 0 \le i_a <   | * <math> 0 \le i_a < 2m </math>  | ||
* <math> 0 \le j_a <   | * <math> 0 \le j_a < 2m </math>    | ||
* <math> 0 \le k_a <   | * <math> 0 \le k_a < 2m </math>,  | ||
*  | * the sum of <math> \left. i_a + j_a + k_a \right. </math> must be, for instance, an even number.    | ||
with  | with  | ||
| Line 31: | Line 29: | ||
\right.  | \right.  | ||
</math>  | </math>  | ||
== Atomic position(s) on a cubic cell ==  | |||
* Number of atoms per cell: 4  | |||
* Coordinates:  | |||
Atom 1: <math> \left( x_1, y_1, z_1 \right) = \left( 0, 0, 0 \right) </math>  | |||
Atom 2: <math> \left( x_2, y_2, z_2 \right) = \left( 0 , \frac{l}{2}, \frac{l}{2}\right) </math>  | |||
Atom 3: <math> \left( x_3, y_3, z_2 \right) = \left( \frac{l}{2}, 0, \frac{l}{2} \right) </math>  | |||
Atom 4: <math> \left( x_4, y_4, z_2 \right) = \left( \frac{l}{2}, \frac{l}{2}, 0  \right) </math>  | |||
Cell dimensions:   | |||
*<math> a=b=c = l </math>  | |||
*<math> \alpha = \beta = \gamma = 90^0 </math>  | |||
[[category: computer simulation techniques]]  | |||
[[category: Contains Jmol]]  | |||
Latest revision as of 09:58, 25 June 2012
<jmol> <jmolApplet> <script>set spin X 10; spin on</script> <size>200</size> <color>lightgrey</color> <wikiPageContents>Face_centered_cubic_lattice.xyz</wikiPageContents> </jmolApplet></jmol>  | 
- Consider:
 
- a cubic simulation box whose sides are of length
 - a number of lattice positions, given by ,
 
with being a positive integer
- The positions are those given by:
 
where the indices of a given valid site are integer numbers that must fulfill the following criteria
- ,
 - the sum of must be, for instance, an even number.
 
with
Atomic position(s) on a cubic cell[edit]
- Number of atoms per cell: 4
 - Coordinates:
 
Atom 1:
Atom 2:
Atom 3:
Atom 4:
Cell dimensions: