Universality classes: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(Added short description for \eta)
 
(21 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Stub-general}}
'''Universality classes''' are groups of [[Idealised models | models]] that have the same set of [[critical exponents]]
{| border="1"
 
:{| border="1"
|-
| dimension ||<math>\alpha</math> || <math>\beta</math> || <math>\gamma</math> || <math>\delta</math> ||<math>\nu</math> || <math>\eta</math> || class
|-
|  ||    ||  || || ||  || || 3-state Potts
|-  
|-  
| <math>d</math> || <math>n</math> || <math>\sigma</math> || name
| ||   ||   || || || ||  ||Ashkin-Teller
|-  
|-  
|  ||   ||   || 3-state Potts
|  || ||   || || || || ||Chiral
|-  
|-  
|  ||  ||   ||Ashkin-Teller
|  ||  ||   || || || ||  ||Directed percolation
|-  
|-  
|  ||   ||   ||Chiral
| 2 ||  0 || 1/8 || 7/4 || || 1  || 1/4  || 2D Ising
|-  
|-  
|  ||   ||   ||Directed percolation
| 3 ||  0.1096(5)  || 0.32653(10) || 1.2373(2)    || 4.7893(8) ||  0.63012(16) || 0.03639(15) || 3D Ising
|-  
|-  
|  ||   ||  ||Ising
|  ||   ||    || || || ||  ||Local linear interface
|-  
|-  
|  ||  ||   ||Local linear interface
| any |0 || 1/2   || 1  || 3 || 1/2 || 0 || Mean-field
|-  
|-  
|  ||   ||   ||Mean-field
|  || ||   || || || ||  ||Molecular beam epitaxy
|-  
|-  
|  ||  ||  ||Molecular beam epitaxy
|  ||  ||  || || || ||  ||Random-field
|-  
|-  
|  ||  ||   ||Random-field
| 3 || −0.0146(8) || 0.3485(2) ||  1.3177(5) || 4.780(2)  ||0.67155(27)  || 0.0380(4) || XY
|}
|}
where
*<math>\alpha</math>  is known as  the [[Critical exponents#Heat capacity exponent| heat capacity exponent]] 
*<math>\beta</math>  is known as the  [[Critical exponents#Magnetic order parameter exponent | magnetic order parameter exponent]]
*<math>\gamma</math> is known as  the [[Critical exponents#Susceptibility exponent |susceptibility exponent ]]
*<math>\delta</math> is known as  the [[Critical exponents#Equation of state exponent |equation of state exponent ]]
*<math>\nu</math> is known as the [[Critical exponents#Correlation length | correlation length exponent]]
*<math>\eta</math> is known as the anomalous dimension in the critical correlation function.
=Derivations=
==3-state Potts==
==3-state Potts==
[[Potts model]]
==Ashkin-Teller==
==Ashkin-Teller==
[[Ashkin-Teller model]]
==Chiral==
==Chiral==
==Directed percolation==
==Directed percolation==
==Ising==
==Ising==
The Hamiltonian of the Ising model is  
The [[Hamiltonian]] of the [[Ising model]] is  


\begin{equation}
<math>
{\cal H}=\sum{<i,j>}S_iS_j
H=\sum_{<i,j>}S_i S_j
\end{equation}
</math>


where $S_i=\pm 1$ and the summation runs over the lattice sites.


The order parameter is  
where <math>S_i=\pm 1</math> and the summation runs over the lattice sites.
\begin{equation}
 
The [[Order parameters | order parameter]] is  
<math>
m=\sum_i S_i
m=\sum_i S_i
\end{equation}
</math>


In two dimensions, Onsager obtained the exact solution in the absence of a external field, and the critical exponents are
In two dimensions, Onsager obtained the exact solution in the absence of a external field, and the [[critical exponents]] are
\begin{equation}
 
:<math>
\alpha=0
\alpha=0
\end{equation}
</math>
(In fact, the specific hear diverges logarithmically with the critical temperature)
 
(In fact, the [[Heat capacity |specific heat]] diverges logarithmically with the [[Critical points |critical temperature]])


\begin{equation}
<math>
\beta=\frac{1}{8}
\beta=\frac{1}{8}
\end{equation}
</math>
\begin{equation}
 
<math>
\gamma=\frac{7}{4}
\gamma=\frac{7}{4}
\end{equation}
</math>
\begin{equation}
 
<math>
\delta=15
\delta=15
\end{equation}
</math>
 
along with <ref>[http://dx.doi.org/10.1103/PhysRev.180.594 Michael E. Fisher "Rigorous Inequalities for Critical-Point Correlation Exponents", Physical Review '''180''' pp. 594-600 (1969)]</ref>:
 
:<math>
\nu=1
</math>
 
:<math>
\eta = 1/4
</math>
 
 
In three dimensions, the critical exponents are not known exactly. However, [[Monte Carlo | Monte Carlo simulations]] and  [[Renormalisation group]] analysis provide accurate estimates <ref name="Campostrini2002">[http://dx.doi.org/10.1103/PhysRevE.65.066127 Massimo Campostrini, Andrea Pelissetto, Paolo Rossi, and Ettore Vicari "25th-order high-temperature expansion results for three-dimensional Ising-like systems on the simple-cubic lattice", Physical Review E '''65''' 066127 (2002)]</ref>:
 
:<math>
\nu=0.63012(16)
</math>
 
:<math>
\alpha=0.1096(5)
</math>
 
:<math>
\beta= 0.32653(10)
</math>
 
:<math>
\gamma=1.2373(2)
</math>
 
:<math>
\delta=4.7893(8)
</math>
 
:<math>
\eta =0.03639(15)
</math>
 
with a critical temperature of <math>k_BT_c = 4.51152786~S </math><ref>[http://dx.doi.org/10.1088/0305-4470/29/17/042 A. L. Talapov and H. W. J Blöte "The magnetization of the 3D Ising model", Journal of Physics A: Mathematical and General '''29''' pp. 5727-5733 (1996)]</ref>. In four and higher dimensions, the critical exponents are mean-field with logarithmic corrections.


==Local linear interface==
==Local linear interface==
==Mean-field==
==Mean-field==
The [[critical exponents]] of are derived as follows <ref>Linda E. Reichl "A Modern Course in Statistical Physics", Wiley-VCH, Berlin 3rd Edition (2009) ISBN 3-527-40782-0 &sect; 4.9.4 </ref>:
====Heat capacity exponent: <math>\alpha</math>====
(final result: <math>\alpha=0</math>)
====Magnetic order parameter exponent: <math>\beta</math>====
(final result: <math>\beta=1/2</math>)
====Susceptibility exponent: <math>\gamma</math>====
(final result: <math>\gamma=1</math>)
====Equation of state exponent: <math>\delta</math>====
(final result: <math>\delta=3</math>)
====Correlation length exponent: <math>\nu</math>====
(final result: <math>\nu=1/2</math>)
====Correlation function exponent: <math>\eta</math>====
(final result: <math>\eta=0</math>)
==Molecular beam epitaxy==
==Molecular beam epitaxy==
==See also==
*[[Critical exponents]]
==Random-field==
==Random-field==
==XY==
For the three dimensional [[XY model]] one has the following [[critical exponents]]<ref name="Campostrini2001" >[http://dx.doi.org/10.1103/PhysRevB.63.214503  Massimo Campostrini, Martin Hasenbusch, Andrea Pelissetto, Paolo Rossi, and Ettore Vicari "Critical behavior of the three-dimensional XY universality class" Physical Review B  '''63''' 214503 (2001)]</ref>:
:<math>
\nu=0.67155(27)
</math>
:<math>\alpha = -0.0146(8)</math>
:<math>
\beta= 0.3485(2)
</math>
:<math>
\gamma=1.3177(5)
</math>
:<math>
\delta=4.780(2)
</math>
:<math>
\eta =0.0380(4)
</math>
=References=
<references/>
[[category: Renormalisation group]]
[[category: Renormalisation group]]

Latest revision as of 05:51, 5 November 2021

Universality classes are groups of models that have the same set of critical exponents

dimension class
3-state Potts
Ashkin-Teller
Chiral
Directed percolation
2 0 1/8 7/4 1 1/4 2D Ising
3 0.1096(5) 0.32653(10) 1.2373(2) 4.7893(8) 0.63012(16) 0.03639(15) 3D Ising
Local linear interface
any 0 1/2 1 3 1/2 0 Mean-field
Molecular beam epitaxy
Random-field
3 −0.0146(8) 0.3485(2) 1.3177(5) 4.780(2) 0.67155(27) 0.0380(4) XY

where

Derivations[edit]

3-state Potts[edit]

Potts model

Ashkin-Teller[edit]

Ashkin-Teller model

Chiral[edit]

Directed percolation[edit]

Ising[edit]

The Hamiltonian of the Ising model is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H=\sum_{<i,j>}S_i S_j }


where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_i=\pm 1} and the summation runs over the lattice sites.

The order parameter is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m=\sum_i S_i }

In two dimensions, Onsager obtained the exact solution in the absence of a external field, and the critical exponents are

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha=0 }

(In fact, the specific heat diverges logarithmically with the critical temperature)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma=\frac{7}{4} }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta=15 }

along with [1]:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu=1 }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta = 1/4 }


In three dimensions, the critical exponents are not known exactly. However, Monte Carlo simulations and Renormalisation group analysis provide accurate estimates [2]:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha=0.1096(5) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta= 0.32653(10) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma=1.2373(2) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta=4.7893(8) }

with a critical temperature of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_BT_c = 4.51152786~S } [3]. In four and higher dimensions, the critical exponents are mean-field with logarithmic corrections.

Local linear interface[edit]

Mean-field[edit]

The critical exponents of are derived as follows [4]:

Heat capacity exponent: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} [edit]

(final result: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha=0} )

Magnetic order parameter exponent: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta} [edit]

(final result: )

Susceptibility exponent: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma} [edit]

(final result: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma=1} )

Equation of state exponent: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta} [edit]

(final result: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta=3} )

Correlation length exponent: [edit]

(final result: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu=1/2} )

Correlation function exponent: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta} [edit]

(final result: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta=0} )

Molecular beam epitaxy[edit]

Random-field[edit]

XY[edit]

For the three dimensional XY model one has the following critical exponents[5]:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu=0.67155(27) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta= 0.3485(2) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma=1.3177(5) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta=4.780(2) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta =0.0380(4) }

References[edit]