1-dimensional Ising model: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
mNo edit summary  | 
				 (minor index change)  | 
				||
| (3 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
The '''1-dimensional Ising model''' is an [[Ising Models| Ising model]] that consists of  a system with <math> N </math> spins in a row. The energy of the system is given by  | |||
The energy of the system   | |||
:<math>  U = -J \sum_{i=1}^{N-1} S_{i} S_{i+1} </math>,    | :<math>  U = -J \sum_{i=1}^{N-1} S_{i} S_{i+1} </math>,    | ||
| Line 8: | Line 5: | ||
where each variable <math> S_j </math> can be either -1 or +1.  | where each variable <math> S_j </math> can be either -1 or +1.  | ||
The partition function of the system will be:  | The [[partition function]] of the system will be:  | ||
:<math> Q_N = \sum_{\Omega^N }  \exp \left[ K \sum_{i=1}^{N-1} S_i S_{i+1}  \right]</math>,    | :<math> Q_N = \sum_{\Omega^N }  \exp \left[ K \sum_{i=1}^{N-1} S_i S_{i+1}  \right]</math>,    | ||
| Line 21: | Line 18: | ||
Performing the sum of the possible values of <math> S_{N} </math> we get:  | Performing the sum of the possible values of <math> S_{N} </math> we get:  | ||
:<math> Q_{N} = \sum_{S_1} \sum_{S_2} e^{K S_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_{N-  | :<math> Q_{N} = \sum_{S_1} \sum_{S_2} e^{K S_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_{N-1}} e^{K S_{N-2} S_{N-1}} \left[ 2 \cosh ( K S_{N-1} ) \right]  | ||
</math>  | </math>  | ||
| Line 35: | Line 32: | ||
:<math> Q_N = 2^{N} \left( \cosh K \right)^{N-1} \approx ( 2 \cosh K )^N </math>  | :<math> Q_N = 2^{N} \left( \cosh K \right)^{N-1} \approx ( 2 \cosh K )^N </math>  | ||
The [[Helmholtz energy function]] in the thermodynamic limit will be  | The [[Helmholtz energy function]] in the [[thermodynamic limit]] will be  | ||
:<math> A = - N k_B T \log \left( 2 \cosh K \right) </math>  | :<math> A = - N k_B T \log \left( 2 \cosh K \right) </math>  | ||
==References==  | |||
# Rodney J. Baxter  "Exactly Solved Models in Statistical Mechanics", Academic Press (1982)  ISBN 0120831821 Chapter 2 (freely available [http://tpsrv.anu.edu.au/Members/baxter/book/Exactly.pdf pdf])  | |||
[[Category: Models]]  | [[Category: Models]]  | ||
Latest revision as of 18:05, 19 February 2009
The 1-dimensional Ising model is an Ising model that consists of a system with spins in a row. The energy of the system is given by
- ,
 
where each variable can be either -1 or +1.
The partition function of the system will be:
- ,
 
where  represents the possible configuration of the N spins of the system,
and 
Performing the sum of the possible values of we get:
Taking into account that
Therefore:
The Helmholtz energy function in the thermodynamic limit will be
References[edit]
- Rodney J. Baxter "Exactly Solved Models in Statistical Mechanics", Academic Press (1982) ISBN 0120831821 Chapter 2 (freely available pdf)