Gibbs ensemble: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(Removing all content from page)
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
Here we have the ''N-particle distribution function''
(Ref. 1 Eq. 2.2)


:<math>\mathcal{G}_{(N)} ({\mathbf X}_{(N)},t)= \frac{\Gamma_{(N)}^{(0)}}{\mathcal{N}} \frac{{\rm d}\mathcal{N}}{{\rm d}\Gamma_{(N)}}</math>
where <math>\Gamma_{(N)}^{(0)}</math> is a normalized constant with the dimensions
of the [[phase space]] <math>\left. \Gamma_{(N)} \right.</math>.
:<math>{\mathbf X}_{(N)} = \{ {\mathbf r}_1 , ...,  {\mathbf r}_N ; {\mathbf p}_1 , ...,  {\mathbf p}_N \}</math>
Normalization condition (Ref. 1 Eq. 2.3):
:<math>\frac{1}{\Gamma_{(N)}^{(0)}} \int_{\Gamma_{(N)}} \mathcal{G}_{(N)} {\rm d}\mathcal{N} =1</math>
it is convenient to set (Ref. 1 Eq. 2.4)
:<math>\Gamma_{(N)}^{(0)} = V^N \mathcal{P}^{3N}</math>
where <math>V</math> is the volume of the system and <math>\mathcal{P}</math> is the characteristic momentum
of the particles (Ref. 1 Eq. 3.26),
:<math>\mathcal{P} = \sqrt{2 \pi m \Theta}</math>
Macroscopic mean values are given by (Ref. 1 Eq. 2.5)
:<math>\langle \psi ({\mathbf r},t)\rangle= \frac{1}{\Gamma_{(N)}^{(0)}}
\int_{\Gamma_{(N)}}  \psi  ({\mathbf X}_{(N)}) \mathcal{G}_{(N)} ({\mathbf X}_{(N)},t) {\rm d}\Gamma_{(N)}
</math>
===[[Ergodic hypothesis |Ergodic theory]]===
Ref. 1 Eq. 2.6
:<math>\langle \psi \rangle = \overline \psi</math>
===[[Entropy]]===
Ref. 1 Eq. 2.70
:<math>S_{(N)}= - \frac{k_B}{ V^N \mathcal{P}^{3N}} \int_\Gamma  \Omega_1,... _N  \mathcal{G}_1,... _N {\rm d}\Gamma_{(N)}</math>
where <math>\Omega</math> is the ''N''-particle [[thermal potential]] (Ref. 1 Eq. 2.12)
:<math>\Omega_{(N)} ({\mathbf X}_{(N)},t)= \ln \mathcal{G}_{(N)} ({\mathbf X}_{(N)},t)</math>
==References==
# G. A. Martynov  "Fundamental Theory of Liquids. Method of Distribution Functions", Adam Hilger (out of print)
[[category: statistical mechanics]]

Latest revision as of 15:45, 21 November 2007

Here we have the N-particle distribution function (Ref. 1 Eq. 2.2)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{G}_{(N)} ({\mathbf X}_{(N)},t)= \frac{\Gamma_{(N)}^{(0)}}{\mathcal{N}} \frac{{\rm d}\mathcal{N}}{{\rm d}\Gamma_{(N)}}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_{(N)}^{(0)}} is a normalized constant with the dimensions of the phase space Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \Gamma_{(N)} \right.} .

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbf X}_{(N)} = \{ {\mathbf r}_1 , ..., {\mathbf r}_N ; {\mathbf p}_1 , ..., {\mathbf p}_N \}}

Normalization condition (Ref. 1 Eq. 2.3):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{\Gamma_{(N)}^{(0)}} \int_{\Gamma_{(N)}} \mathcal{G}_{(N)} {\rm d}\mathcal{N} =1}

it is convenient to set (Ref. 1 Eq. 2.4)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_{(N)}^{(0)} = V^N \mathcal{P}^{3N}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} is the volume of the system and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{P}} is the characteristic momentum of the particles (Ref. 1 Eq. 3.26),

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{P} = \sqrt{2 \pi m \Theta}}

Macroscopic mean values are given by (Ref. 1 Eq. 2.5)

Ergodic theory[edit]

Ref. 1 Eq. 2.6

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \psi \rangle = \overline \psi}

Entropy[edit]

Ref. 1 Eq. 2.70

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{(N)}= - \frac{k_B}{ V^N \mathcal{P}^{3N}} \int_\Gamma \Omega_1,... _N \mathcal{G}_1,... _N {\rm d}\Gamma_{(N)}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega} is the N-particle thermal potential (Ref. 1 Eq. 2.12)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega_{(N)} ({\mathbf X}_{(N)},t)= \ln \mathcal{G}_{(N)} ({\mathbf X}_{(N)},t)}

References[edit]

  1. G. A. Martynov "Fundamental Theory of Liquids. Method of Distribution Functions", Adam Hilger (out of print)