MOZ

From SklogWiki
Jump to: navigation, search

The Ornstein-Zernike equations for mixtures (MOZ) of monomers with coincident oligomers (coincident dimers, trimers,...,n-mers).

h_{an}({\mathbf r}) - c_{an}({\mathbf r}) =  \int  h_{aa} ({\mathbf r'})~\rho_a ~c_{an}(|{\mathbf r} - {\mathbf r'}|) {\rm d}{\mathbf r'}~~~~~n=a,2,3,...

Since all oligomers are at infinite dilution, the OZ's for all n>1 are decoupled. The first member is for the bulk monomer fluid a (with size \sigma and energy \epsilon)

h_{aa}({\mathbf r}) - c_{aa}({\mathbf r}) =  \int  h_{aa} ({\mathbf r'})~\rho_a ~c_{aa}(|{\mathbf r} - {\mathbf r'}|) {\rm d}{\mathbf r'}

For a coincident dimer (n=2) of size \sigma and energy 2\epsilon at infinite dilution in the bulk a-monomers:

h_{a2}({\mathbf r}) - c_{a2}({\mathbf r}) =  \int  h_{aa} ({\mathbf r'})~\rho_a ~c_{a2}(|{\mathbf r} - {\mathbf r'}|) {\rm d}{\mathbf r'}

For a coincident trimer (n=3) of size \sigma and energy 3\epsilon at infinite dilution in the bulk a-monomers:

h_{a3}({\mathbf r}) - c_{a3}({\mathbf r}) =  \int  h_{aa} ({\mathbf r'})~\rho_a ~c_{a3}(|{\mathbf r} - {\mathbf r'}|) {\rm d}{\mathbf r'}

References[edit]