Building up a diamond lattice

From SklogWiki
Jump to navigation Jump to search
  • Consider:
  1. a cubic simulation box whose sides are of length
  2. a number of lattice positions, given by ,

with being a positive integer

  • The positions are those given by:

where the indices of a given valid site are integer numbers that must fulfill the following criteria

  • ,
  • the sum of can have only the values: 0, 3, 4, 7, 8, 10, ...

i.e, ; OR; , with being any integer number

  • the indices must be either all even or all odd.

with

Atomic position(s) on a cubic cell[edit]

  • Number of atoms per cell: 8
  • Coordinates:

Atom 1:

Atom 2:

Atom 3:

Atom 4: Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left(x_{4},y_{4},z_{4}\right)=\left({\frac {l}{2}},{\frac {l}{2}},0\right)}

Atom 5: Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left(x_{5},y_{5},z_{5}\right)=\left({\frac {l}{4}},{\frac {l}{4}},{\frac {l}{4}}\right)}

Atom 6:

Atom 7: Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left(x_{7},y_{7},z_{7}\right)=\left({\frac {3l}{4}},{\frac {l}{4}},{\frac {3l}{4}}\right)}

Atom 8:

Cell dimensions: