Editing Virial equation of state

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
The '''virial equation of state''' is used to describe the behavior of diluted gases.  
The virial equation of state is used to describe the behavior of diluted gases.  
It is usually written as an expansion of the [[compressibility factor]], <math> Z </math>, in terms of either the
It is usually written as an expansion of the [[compressibility factor]], <math> Z </math>, in terms of either the
density or the pressure. Such an expansion was first introduced in 1885 by Thiesen <ref>[http://dx.doi.org/10.1002/andp.18852600308 M. Thiesen "Untersuchungen über die Zustandsgleichung", Annalen der Physik '''24''' pp. 467-492 (1885)]</ref> and extensively studied by Heike Kamerlingh Onnes <ref> H. Kammerlingh Onnes "Expression of the equation of state of gases and liquids by means of series", Communications from the Physical Laboratory of the University of Leiden '''71''' pp. 3-25 (1901)</ref>
density or the pressure. Such an expansion was first introduced by Kammerlingh Onnes. In the first case:
<ref>[http://www.digitallibrary.nl/proceedings/search/detail.cfm?pubid=436&view=image&startrow=1 H. Kammerlingh Onnes "Expression of the equation of state of gases and liquids by means of series", Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen '''4''' pp. 125-147 (1902)]</ref>, and mathematically by Ursell <ref>[http://dx.doi.org/10.1017/S0305004100011191 H. D. Ursell "The evaluation of Gibbs' phase-integral for imperfect gases", Mathematical Proceedings of the Cambridge Philosophical Society '''23''' pp. 685-697 (1927)]</ref>. One has
   
   
:<math> \frac{p V}{N k_B T } = Z = 1 + \sum_{k=2}^{\infty} B_k(T) \rho^{k-1}</math>.
:<math> \frac{p V}{N k_B T } = Z = 1 + \sum_{k=2}^{\infty} B_k(T) \rho^{k-1}</math>.
Line 8: Line 7:
where  
where  


* <math> p </math> is the [[pressure]]
* <math> p </math> is the pressure
 
*<math> V </math>  is the volume
*<math> V </math>  is the volume
*<math> N </math> is the number of molecules
*<math> N </math> is the number of molecules
*<math> T </math> is the [[temperature]]
 
*<math>k_B</math> is the [[Boltzmann constant]]
*<math> \rho \equiv \frac{N}{V} </math> is the (number) density
*<math> \rho \equiv \frac{N}{V} </math> is the (number) density
*<math> B_k\left( T \right) </math> is called the k-th virial coefficient
*<math> B_k\left( T \right) </math> is called the k-th virial coefficient
==Virial coefficients==
==Virial coefficients==
The [[second virial coefficient]] represents the initial departure from [[Ideal gas |ideal-gas]] behaviour
The [[second virial coefficient]] represents the initial departure from ideal-gas behavior


:<math>B_{2}(T)= \frac{N_A}{2V} \int .... \int (1-e^{-\Phi/k_BT}) ~d\tau_1 d\tau_2</math>
:<math>B_{2}(T)= \frac{N_0}{2V} \int .... \int (1-e^{-\Phi/k_BT}) ~d\tau_1 d\tau_2</math>


where <math>N_A</math> is [[Avogadro constant | Avogadros number]] and <math>d\tau_1</math> and <math>d\tau_2</math> are volume elements of two different molecules
where <math>N_0</math> is [[Avogadro constant | Avogadros number]] and <math>d\tau_1</math> and <math>d\tau_2</math> are volume elements of two different molecules
in configuration space.  
in configuration space.  


Line 28: Line 29:


where ''f'' is the [[Mayer f-function]] (see also: [[Cluster integrals]]).
where ''f'' is the [[Mayer f-function]] (see also: [[Cluster integrals]]).
See also <ref>[http://dx.doi.org/10.1080/002689796173453 M. S. Wertheim "Fluids of hard convex molecules III. The third virial coefficient", Molecular Physics '''89''' pp. 1005-1017 (1996)]</ref>
See also:
*[http://dx.doi.org/10.1080/002689796173453 M. S. Wertheim "Fluids of hard convex molecules III. The third virial coefficient", Molecular Physics '''89''' pp. 1005-1017 (1996)]


==Convergence==
==Convergence==
For a commentary on the convergence of the virial equation of state see <ref>[http://dx.doi.org/10.1063/1.1704186    J. L. Lebowitz and O. Penrose "Convergence of Virial Expansions", Journal of Mathematical Physics '''5''' pp. 841-847 (1964)]</ref> and section 3 of <ref>[http://dx.doi.org/10.1088/0953-8984/20/28/283102 A. J. Masters "Virial expansions", Journal of Physics: Condensed Matter '''20''' 283102 (2008)]</ref>.
See Ref. 3.
==Quantum virial coefficients==
Using the [[path integral formulation]] one can also calculate the virial coefficients of quantum systems  <ref>[http://dx.doi.org/10.1063/1.3573564 Giovanni Garberoglio and Allan H. Harvey "Path-integral calculation of the third virial coefficient of quantum gases at low temperatures", Journal of Chemical Physics 134, 134106 (2011)]</ref>.
==References==
==References==
<references/>
# H. Kammerlingh Onnes "", Communications from the Physical Laboratory Leiden '''71''' (1901)
'''Related reading'''
#[http://dx.doi.org/10.1088/0034-4885/7/1/312 James A Beattie and Walter H Stockmayer "Equations of state", Reports on Progress in Physics '''7''' pp. 195-229 (1940)]
*[http://dx.doi.org/10.1088/0034-4885/7/1/312 James A Beattie and Walter H Stockmayer "Equations of state", Reports on Progress in Physics '''7''' pp. 195-229 (1940)]
#[http://dx.doi.org/10.1063/1.1704186    J. L. Lebowitz and O. Penrose "Convergence of Virial Expansions", Journal of Mathematical Physics '''5''' pp. 841-847 (1964)]
*Edward Allen Mason and Thomas Harley Spurling "The virial equation of state", Pergamon Press (1969) ISBN 0080132928
*[http://dx.doi.org/10.1063/1.4929392  Nathaniel S. Barlow, Andrew J. Schultz, Steven J. Weinstein and David A. Kofke "Analytic continuation of the virial series through the critical point using parametric approximants", Journal of Chemical Physics '''143''' 071103 (2015)]
*[https://doi.org/10.1063/1.5016165 Harold W. Hatch, Sally Jiao, Nathan A. Mahynski, Marco A. Blanco, and Vincent K. Shen "Communication: Predicting virial coefficients and alchemical transformations by extrapolating Mayer-sampling Monte Carlo simulations", Journal of Chemical Physics '''147''' 231102 (2017)]
 
[[category:equations of state]]
[[category:equations of state]]
Please note that all contributions to SklogWiki are considered to be released under the Creative Commons Attribution Non-Commercial Share Alike (see SklogWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)