Editing Structure factor

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
The '''static structure factor''', <math>S(k)</math>, for a monatomic system composed of spherical scatterers is defined by (Eq. 1 in <ref>[http://dx.doi.org/10.1088/0953-8984/6/41/006 A. Filipponi, "The radial distribution function probed by X-ray absorption spectroscopy", Journal of Physics: Condensed Matter  '''6''' pp.  8415-8427 (1994)]</ref>):
The '''structure factor''', <math>S(k)</math>, for a monatomic system is defined by:


:<math>S(k) := 1 + \frac{4 \pi \rho}{k} \int_0^{\infty} ( g_2(r) -1 ) r \sin (kr) ~{\mathrm {d}}r</math>


where <math>g_2(r)</math> is the [[radial distribution function]], and <math>k</math> is the scattering wave-vector modulus
:<math>S(k) = 1 + \frac{4 \pi \rho}{k} \int_0^{\infty} ( g_2(r) -1 ) r \sin (kr) ~dr</math>


:<math>k= |\mathbf{k}|= \frac{4 \pi }{\lambda} \sin \left( \frac{\theta}{2}\right)</math>.
where <math>k</math> is the scattering wave-vector modulus
 
:<math>k= |\mathbf{k}|= \frac{4 \pi }{\lambda \sin \left( \frac{\theta}{2}\right)}</math>


The structure factor is basically a [[Fourier analysis | Fourier transform]] of the [[pair distribution function]] <math>{\rm g}(r)</math>,
The structure factor is basically a [[Fourier analysis | Fourier transform]] of the [[pair distribution function]] <math>{\rm g}(r)</math>,
Line 17: Line 18:
from which one can calculate the [[Compressibility | isothermal compressibility]].
from which one can calculate the [[Compressibility | isothermal compressibility]].


To calculate <math>S(k)</math> in [[Computer simulation techniques |molecular simulations]] one typically uses:
To calculate <math>S(k)</math> in computer simulations one typically uses:


:<math>S(k) = \frac{1}{N} \sum^{N}_{n,m=1} \langle\exp(-i\mathbf{k}(\mathbf{r}_n-\mathbf{r}_m)) \rangle </math>,
:<math>S(k) = \frac{1}{N} \sum^{N}_{i,j=1} \left<exp(-i(r_i-r_j))\right> </math>


where <math>N</math> is the number of particles and <math>\mathbf{r}_n</math> and
<math>\mathbf{r}_m</math> are the coordinates of particles
<math>n</math> and <math>m</math> respectively.


The dynamic, time dependent structure factor is defined as follows:
:<math>S(k,t) = \frac{1}{N} \sum^{N}_{n,m=1}  \langle \exp(-i\mathbf{k}(\mathbf{r}_n(t)-\mathbf{r}_m(0))) \rangle </math>,


The ratio between the dynamic and the static structure factor, <math>S(k,t)/S(k,0)</math>, is known
as the collective (or coherent) intermediate scattering function. 
==Binary mixtures==
<ref>[http://dx.doi.org/10.1080/14786436508211931 T. E. Faber and J. M. Ziman "A theory of the electrical properties of liquid metals III. the resistivity of binary alloys", Philosophical Magazine '''11''' pp. 153-173 (1965)]</ref><ref>[http://dx.doi.org/10.1103/PhysRev.156.685 N. W. Ashcroft and David C. Langreth "Structure of Binary Liquid Mixtures. I", Physical Review '''156''' pp. 685–692 (1967)]</ref><ref>[http://dx.doi.org/10.1103/PhysRevB.2.3004 A. B. Bhatia and D. E. Thornton "Structural Aspects of the Electrical Resistivity of Binary Alloys", Physical Review B '''2''' pp. 3004-3012 (1970)]</ref>
==References==
==References==
<references/>
#[http://dx.doi.org/10.1088/0953-8984/6/41/006 A. Filipponi, "The radial distribution function probed by X-ray absorption spectroscopy", J. Phys.: Condens. Matter, '''6''' pp. 8415-8427 (1994)]
;Related reading
*[http://dx.doi.org/10.1007/BF01391926 F. Zernike and J. A. Prins "Die Beugung von Röntgenstrahlen in Flüssigkeiten als Effekt der Molekülanordnung", Zeitschrift für Physik '''41''' pp. 184-194 (1920)]
*P. Debye and H. Menke "", Physik. Zeits. '''31''' pp. 348- (1930)
*B. E. Warren "X-Ray Diffraction", Dover Publications (1969) ISBN 0486663175 &sect; 10.4
*Jean-Pierre Hansen and I.R. McDonald "Theory of Simple Liquids" (Third Edition) [http://dx.doi.org/10.1016/B978-012370535-8/50006-9  Chapter 4: "Distribution-function Theories"] &sect; 4.1
 
[[category: Statistical mechanics]]
[[category: Statistical mechanics]]
Please note that all contributions to SklogWiki are considered to be released under the Creative Commons Attribution Non-Commercial Share Alike (see SklogWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)