Editing Stockmayer potential

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
The '''Stockmayer potential''' consists of the [[Lennard-Jones model]] with an embedded point [[Dipole moment |dipole]]. Thus the Stockmayer potential becomes (Eq. 1 <ref>[http://dx.doi.org/10.1063/1.1750922 W. H. Stockmayer "Second Virial Coefficients of Polar Gases", Journal of Chemical Physics '''9''' pp. 398-402 (1941)]</ref>):
The '''Stockmayer potential''' consists of the [[Lennard-Jones model]] with an embedded point dipole. Thus the Stockmayer potential becomes:


:<math> \Phi_{12}(r, \theta_1, \theta_2, \phi) = 4 \epsilon \left[ \left(\frac{\sigma}{r} \right)^{12}-  \left( \frac{\sigma}{r}\right)^6 \right] - \frac{\mu_1 \mu_2}{4\pi \epsilon_0 r^3} \left(2 \cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 \cos \phi\right) </math>
:<math> \Phi(r, \theta_1, \theta_2, \phi) = 4 \epsilon \left[ \left(\frac{\sigma}{r} \right)^{12}-  \left( \frac{\sigma}{r}\right)^6 \right] - \frac{\mu^2}{4\pi \epsilon_0 r^3} \left(2 \cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 \cos \phi\right) </math>


where:
where:
* <math>r := |\mathbf{r}_1 - \mathbf{r}_2|</math>
* <math> \Phi(r) </math> is the [[intermolecular pair potential]] between two particles at a distance r;
* <math> \Phi(r) </math> is the [[intermolecular pair potential]] between two particles at a distance <math>r</math>
* <math> \sigma </math> is the  diameter (length), i.e. the value of <math>r</math> at <math> \Phi(r)=0</math> ;
* <math> \sigma </math> is the  diameter (length), i.e. the value of <math>r</math> at <math> \Phi(r)=0</math>  
* <math> \epsilon </math> : well depth (energy)
* <math> \epsilon </math> represents the well depth (energy)
* <math> \epsilon_0 </math> is the permittivity of the vacuum
* <math> \epsilon_0 </math> is the permittivity of the vacuum
* <math>\mu</math> is the dipole moment
* <math>\mu</math> is the dipole moment
* <math>\theta_1</math> and <math>\theta_2 </math> are the angles associated with the inclination of the two dipole axes with respect to the intermolecular axis.
* <math>\theta_1,\theta_2 </math> is the inclination of the two dipole axes with respect to the intermolecular axis.
* <math>\phi</math> is the azimuth angle between the two dipole moments
 
If one defines a reduced dipole moment, <math>\mu^*</math>, such that:
If one defines the reduced dipole moment, <math>\mu^*</math>  


:<math>\mu^* := \sqrt{\frac{\mu^2}{4\pi\epsilon_0\epsilon \sigma^3}}</math>
:<math>\mu^* := \sqrt{\frac{\mu^2}{4\pi\epsilon_0\epsilon \sigma^3}}</math>
Line 20: Line 19:


For this reason the potential is sometimes known as the Stockmayer 12-6-3 potential.
For this reason the potential is sometimes known as the Stockmayer 12-6-3 potential.
==Critical properties==
 
In the range <math>0 \leq \mu^* \leq 2.45</math> <ref>[http://dx.doi.org/10.1080/00268979400100294 M.E. Van Leeuwen "Deviation from corresponding-states behaviour for polar fluids", Molecular Physics '''82''' pp. 383-392 (1994)]</ref>:
:<math>T_c^* = 1.313 + 0.2999\mu^{*2} -0.2837 \ln(\mu^{*2} +1)</math>
:<math>\rho_c^* = 0.3009 - 0.00785\mu^{*2} - 0.00198\mu^{*4}</math>
:<math>P_c^* = 0.127 + 0.0023\mu^{*2}</math>
==Bridge function==
A [[bridge function]] for use in [[integral equations]] has been calculated by Puibasset and Belloni <ref>[http://dx.doi.org/10.1063/1.4703899 Joël Puibasset and Luc Belloni "Bridge function for the dipolar fluid from simulation", Journal of Chemical Physics '''136''' 154503 (2012)]</ref>.
==References==
==References==
<references/>
#[http://dx.doi.org/10.1080/00268979400100294 M. E. Van Leeuwe "Deviation from corresponding-states behaviour for polar fluids", Molecular Physics '''82''' pp. 383-392 (1994)]
'''Related reading'''
*[http://www.nrcresearchpress.com/doi/abs/10.1139/v77-418 Frank M. Mourits, Frans H. A. Rummens "A critical evaluation of Lennard–Jones and Stockmayer potential parameters and of some correlation methods", Canadian Journal of Chemistry '''55''' pp. 3007-3020 (1977)]
*[http://dx.doi.org/10.1016/0378-3812(94)80018-9 M. E. van Leeuwen "Derivation of Stockmayer potential parameters for polar fluids", Fluid Phase Equilibria '''99''' pp. 1-18 (1994)]  
*[http://dx.doi.org/10.1016/j.fluid.2007.02.009 Osvaldo H. Scalise "On the phase equilibrium Stockmayer fluids", Fluid Phase Equilibria '''253''' pp. 171–175 (2007)]
*[http://dx.doi.org/10.1103/PhysRevE.75.011506  Reinhard Hentschke, Jörg Bartke, and Florian Pesth "Equilibrium polymerization and gas-liquid critical behavior in the Stockmayer fluid", Physical Review E '''75''' 011506 (2007)]
*[http://dx.doi.org/10.1063/1.4821455  Jun Wang , Pankaj A. Apte , James R. Morris  and Xiao Cheng Zeng "Freezing point and solid-liquid interfacial free energy of Stockmayer dipolar fluids: A molecular dynamics simulation study", Journal of Chemical Physics '''139''' 114705 (2013)]
 
{{numeric}}
[[category: models]]
[[category: models]]
Please note that all contributions to SklogWiki are considered to be released under the Creative Commons Attribution Non-Commercial Share Alike (see SklogWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)

Template used on this page: