Editing Semi-grand ensembles

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
'''Semi-grand ensembles''' are used in [[Monte Carlo]] simulation of [[mixtures]]. In these ensembles the total number of molecules is fixed, but the composition can change.
== General Features ==
== Canonical ensemble: fixed volume, temperature and number(s) of molecules ==
Semi-grand ensembles are used in Monte Carlo simulation of mixtures.
We shall consider a system consisting of ''c'' components;.  
 
In the [[Canonical ensemble|canonical ensemble]], the differential
In this ensembles the total number of molecules is fixed, but the composition can change.
 
== Canonical Ensemble: fixed volume, temperature and number(s) of molecules ==
 
We will consider a binary system;.  
In the Canonical Ensemble, the differential
equation energy for the [[Helmholtz energy function]] can be written as:
equation energy for the [[Helmholtz energy function]] can be written as:


: <math> d \left( \beta A \right) = E d \beta - (\beta p) d V + \sum_{i=1}^c (\beta \mu_i) d N_i </math>,
: <math> d \left( \beta A \right) = E d \beta - (\beta p) d V + \sum_{i=1}^2 (\beta \mu_i) d N_i </math>,
where:
where:


*<math> A </math> is the [[Helmholtz energy function]]
*<math> A </math> is the [[Helmholtz energy function]]
*<math> \beta := 1/k_B T </math>
*<math> \beta \equiv 1/k_B T </math>
*<math> k_B</math> is the [[Boltzmann constant]]
*<math> k_B</math> is the [[Boltzmann constant]]
*<math> T </math> is the absolute [[temperature]]
*<math> T </math> is the absolute temperature
*<math> E </math> is the [[internal energy]]
*<math> E </math> is the internal energy
*<math>  p </math> is the [[pressure]]
*<math>  p </math> is the pressure
*<math> \mu_i </math> is the [[Chemical potential|chemical potential]] of the species <math>i</math>
*<math> \mu_i </math> is the chemical potential of the species "i"
*<math> N_i </math> is the number of molecules of the species <math>i</math>
*<math> N_i </math> is the number of molecules of the species "i"


== Semi-grand ensemble at fixed volume and temperature ==
== Semi-grand ensemble at fixed volume and temperature ==


Consider now that we wish to consider a system with fixed total number of particles, <math> N </math>
Consider now that we want to consider a system with fixed total number of particles, <math> N </math>


: <math> \left. N = \sum_{i=1}^c N_i  \right. </math>;  
: <math> \left. N = N_1 + N_2 \right. </math>;  


but the composition can change, from thermodynamic considerations one can apply a [[Legendre transform]] [HAVE TO CHECK ACCURACY]
but the composition can change, from the thermodynamics we can apply a Legendre's transform [HAVE TO CHECK ACCURACY]
to the differential equation written above in terms of <math> A (T,V,N_1,N_2) </math>.  
to the differential equation written above in terms of <math> A (T,V,N_1,N_2) </math>.  


* Consider the variable change <math> N_1 \rightarrow N </math> i.e.: <math> \left. N_1 = N-  \sum_{i=2}^c N_i  \right. </math>
# Consider the change <math> (N_1,N_2) \rightarrow (N,N_2) </math>
 
: <math> d \left( \beta A \right) = E d \beta - (\beta p) d V + \sum_{i=1}^2 (\beta \mu_i) d N_i </math
 
: <math> d \left( \beta A \right) = E d \beta - (\beta p) d V +  \beta \mu_1 d N - \beta \mu_1 \sum_{i=2}^c d N_i + \sum_{i=2}^c \beta \mu_i d N_i; </math>
 
 
: <math> d \left( \beta A \right) = E d \beta - (\beta p) d V +  \beta \mu_1 d N + \sum_{i=2}^c \beta (\mu_i-\mu_1) d N_i; </math>
 
or,
 
: <math> d \left( \beta A \right) = E d \beta - (\beta p) d V +  \beta \mu_1 d N + \sum_{i=2}^c \beta \mu_{i1} d N_i; </math>
 
where <math> \left. \mu_{i1} \equiv  \mu_i - \mu_1 \right. </math>.
* Now considering the thermodynamic potential: <math> \beta A - \sum_{i=2}^c \left( N_i \beta \mu_{i1} \right) </math>
 
:<math> d \left[ \beta A - \sum_{i=2}^c ( \beta \mu_{i1} N_i ) \right] = E d \beta - \left( \beta p \right) d V + \beta \mu_{1} d N -
\sum_{i=2}^c N_i d \left( \beta \mu_{i1} \right).
</math>
 
== Fixed pressure and temperature ==
 
In the [[isothermal-isobaric ensemble]]: <math> (N_1,N_2, \cdots, N_c, p, T) </math> one can write:
 
:<math> d (\beta G) = E d \beta + V d (\beta p) + \sum_{i=1}^c \left( \beta \mu_i \right) d N_i </math>
 
where:
 
* <math> G </math> is the [[Gibbs energy function]]
 
==  Fixed pressure and temperature: Semi-grand ensemble ==
 
Following the procedure described above one can write:
 
:<math> \beta G (\beta,\beta p, N_1, N_2,  \cdots N_c ) \rightarrow \beta \Phi (\beta, \beta p, N, \beta \mu_{21}, \cdots, \beta \mu_{c1} ) </math>,
 
where the ''new'' thermodynamic potential <math> \beta \Phi </math> is given by:
 
:<math> d (\beta \Phi)  = d \left[ \beta G - \sum_{i=2}^c (\beta \mu_{i1} N_i ) \right] = E d \beta + V d (\beta p) + \beta \mu_1 d N
- \sum_{i=2}^c N_i d (\beta \mu_{i1} ).
</math>
 
==  Fixed pressure and temperature: Semi-grand ensemble: partition function ==
 
In the fixed composition ensemble one has:
 
:<math> Q_{N_i,p,T} = \frac{ \beta p }{\prod_{i=1}^c \left( \Lambda_i^{3N_i} N_i! \right) } \int_{0}^{\infty} dV e^{-\beta p V } V^N
\int \left( \prod_{i=1}^c d (R_i^*)^{3N_i} \right) \exp \left[ - \beta U \left( V, (R_1^*)^{3N_1} , \cdots \right) \right].
</math>
 
==References==
<references/>
;Related reading
*[http://dx.doi.org/10.1063/1.3677193 Yiping Tang "A new method of semigrand canonical ensemble to calculate first-order phase transitions for binary mixtures", Journal of Chemical Physics '''136''' 034505 (2012)]
[[category: Statistical mechanics]]
Please note that all contributions to SklogWiki are considered to be released under the Creative Commons Attribution Non-Commercial Share Alike (see SklogWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)