Editing RSOZ

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
Given and Stell (Refs 1 and 2) provided '''exact''' [[Ornstein-Zernike relation]]s  for two-phase random media
Given and Stell \cite{JCP_1992_97_04573,PA_1994_209_0495} provided {\bf exact} OZ equations for two-phase random media
based on the original work of Madden and Glandt (Refs 3 and 4).
based on the original work of Madden and Glandt \cite{JSP_1988_51_0537_nolotengoSpringer,JCP_1992_96_05422}.\\
For a two-species system, for the <math>(s+1)</math> replicated system one has (see Eq.s 2.7 --2.11 Ref. 2):
For a two-species system, for the $(s+1)$ replicated system one has (see Eq.s 2.7 --2.11 \cite{PA_1994_209_0495}):\\
 
\begin{equation}
:<math>h_{mm} = c_{mm} + \rho_m c_{mm} \otimes h_{mm} + s\rho_f c_{mf}  \otimes h_{mf}</math>
h_{mm} = c_{mm} + \rho_m c_{mm} \otimes h_{mm} + s\rho_f c_{mf}  \otimes h_{mf}
 
\end{equation}
 
\begin{equation}
:<math>h_{mf} = c_{mf} + \rho_m c_{mm} \otimes h_{mf} + \rho_f  c_{mf}  \otimes h_{ff} + (s-1) \rho_f c_{mf}  \otimes h_{12}</math>
h_{mf} = c_{mf} + \rho_m c_{mm} \otimes h_{mf} + \rho_f  c_{mf}  \otimes h_{ff} + (s-1) \rho_f c_{mf}  \otimes h_{12}
 
\end{equation}
 
\begin{equation}
:<math>h_{fm} = c_{fm} + \rho_m c_{fm} \otimes h_{mm} + \rho_f  c_{ff}  \otimes h_{fm} + (s-1) \rho_f c_{12}  \otimes h_{fm}</math>
h_{fm} = c_{fm} + \rho_m c_{fm} \otimes h_{mm} + \rho_f  c_{ff}  \otimes h_{fm} + (s-1) \rho_f c_{12}  \otimes h_{fm}
 
\end{equation}
 
\begin{equation}
:<math>h_{ff} = c_{ff} + \rho_m c_{fm} \otimes h_{mf} + \rho_f  c_{ff}  \otimes h_{ff} + (s-1) \rho_f c_{12}  \otimes h_{12}</math>
h_{ff} = c_{ff} + \rho_m c_{fm} \otimes h_{mf} + \rho_f  c_{ff}  \otimes h_{ff} + (s-1) \rho_f c_{12}  \otimes h_{12}
 
\end{equation}
:<math>h_{12} = c_{12} + \rho_m c_{fm} \otimes h_{mf} + \rho_f  c_{ff}  \otimes h_{12} + \rho_f  c_{12}  \otimes h_{ff} + (s-2) \rho_f c_{12} \otimes h_{12} </math>
\begin{equation}
 
h_{12} = c_{12} + \rho_m c_{fm} \otimes h_{mf} + \rho_f  c_{ff}  \otimes h_{12} +  
 
\rho_f  c_{12}  \otimes h_{ff} + (s-2) \rho_f c_{12}   \otimes h_{12}
In the limit of <math>s \rightarrow 0</math> these equations from the [[Replica Ornstein-Zernike relation |replica Ornstein-Zernike]] (ROZ)equations (see Eq.s 2.12 --2.16 Ref. 2):
\end{equation}
 
In the limit of $s \rightarrow 0$ these equations from the ROZ equations (see Eq.s 2.12 --2.16 \cite{PA_1994_209_0495}):\\
:<math>h_{mm} = c_{mm} + \rho_m c_{mm} \otimes h_{mm}</math>
\begin{equation}
 
h_{mm} = c_{mm} + \rho_m c_{mm} \otimes h_{mm}
 
\end{equation}
:<math>h_{mf} = c_{mf} + \rho_m c_{mm} \otimes h_{mf} + \rho_f  c_{mf}  \otimes h_{ff} - \rho_f c_{mf}  \otimes h_{12}</math>
\begin{equation}
 
h_{mf} = c_{mf} + \rho_m c_{mm} \otimes h_{mf} + \rho_f  c_{mf}  \otimes h_{ff} - \rho_f c_{mf}  \otimes h_{12}
 
\end{equation}
:<math>h_{fm} = c_{fm} + \rho_m c_{fm} \otimes h_{mm} + \rho_f  c_{ff}  \otimes h_{fm} - \rho_f c_{12}  \otimes h_{fm}</math>
\begin{equation}
 
h_{fm} = c_{fm} + \rho_m c_{fm} \otimes h_{mm} + \rho_f  c_{ff}  \otimes h_{fm} - \rho_f c_{12}  \otimes h_{fm}
 
\end{equation}
:<math>h_{ff} = c_{ff} + \rho_m c_{fm} \otimes h_{mf} + \rho_f  c_{ff}  \otimes h_{ff} - \rho_f c_{12}  \otimes h_{12}</math>
\begin{equation}
 
h_{ff} = c_{ff} + \rho_m c_{fm} \otimes h_{mf} + \rho_f  c_{ff}  \otimes h_{ff} - \rho_f c_{12}  \otimes h_{12}
 
\end{equation}
:<math>h_{12} = c_{12} + \rho_m c_{fm} \otimes h_{mf} + \rho_f  c_{ff}  \otimes h_{12} + \rho_f  c_{12}  \otimes h_{ff} -2 \rho_f c_{12}  \otimes h_{12}</math>
\begin{equation}
 
h_{12} = c_{12} + \rho_m c_{fm} \otimes h_{mf} + \rho_f  c_{ff}  \otimes h_{12} +  
\rho_f  c_{12}  \otimes h_{ff} -2 \rho_f c_{12}  \otimes h_{12}
\end{equation}
When written in the `percolation terminology'
When written in the `percolation terminology'
where <math>c</math> terms ''connected'' and <math>b</math> ''blocking'' are adapted from the
where $c$ terms `{\it connected}' and $b$ `{\it blocking}' are adapted from the
language of percolation theory.
language of percolation theory.
 
\begin{equation}
:<math>h_{mm} = c_{mm} + \rho_m c_{mm} \otimes h_{mm}</math>
h_{mm} = c_{mm} + \rho_m c_{mm} \otimes h_{mm}
 
\end{equation}
:<math>h_{fm} = c_{fm} + \rho_m c_{fm} \otimes h_{mm} + \rho_f c_c \otimes h_{fm}</math>
\begin{equation}
 
h_{fm} = c_{fm} + \rho_m c_{fm} \otimes h_{mm} + \rho_f c_c \otimes h_{fm}
:<math>h_{ff} = c_{ff} + \rho_m c_{fm} \otimes h_{mf} +  \rho_f c_c \otimes h_{ff} + \rho_f c_b \otimes h_c</math>
\end{equation}
 
\begin{equation}
:<math>h_c = c_c + \rho_f c_c \otimes h_c</math>
h_{ff} = c_{ff} + \rho_m c_{fm} \otimes h_{mf} +  \rho_f c_c \otimes h_{ff} + \rho_f c_b \otimes h_c
 
\end{equation}
\begin{equation}
h_c = c_c + \rho_f c_c \otimes h_c
\end{equation}
where the direct correlation function is split into
where the direct correlation function is split into
 
\begin{equation}
:<math>\left.c_{ff}(12)\right. = c_c (12) + c_b (12)</math>
c_{ff}(12) = c_c (12) + c_b (12)
\end{equation}
and the total correlation function is also split into
and the total correlation function is also split into
:<math>\left.h_{ff}(12)\right.= h_c (12) + h_b(12)</math>
\begin{equation}
 
h_{ff}(12)= h_c (12) + h_b(12)
where <math>m</math> denotes the matrix
\end{equation}
and <math>f</math> denotes the fluid.
where $m$ denotes the matrix
The blocking function <math>h_b(x)</math> accounts for correlations between a pair of  
and $f$ denotes the fluid.
fluid particles ``blocked" or separated from each other by matrix particles.
The blocking function $h_b(x)$ accounts for correlations between a pair of  
fluid particles ``blocked" or separated from each other by matrix particles.\\
IMPORTANT NOTE: Unlike an equilibrium mixture, there is only one convolution
IMPORTANT NOTE: Unlike an equilibrium mixture, there is only one convolution
integral for <math>h_{mm}</math> because the structure of the medium is
integral for $h_{mm}$ because the structure of the medium is
unaffected by the presence of fluid particles.
unaffected by the presence of fluid particles.\\
 
Note: $C_{ff}$ (Madden and Glandt) $=h_c$ (Given and Stell)\\
*Note: <math>C_{ff}</math> (Madden and Glandt) <math>=h_c</math> (Given and Stell)
Note: fluid: $f$ (Madden and Glandt), `1'  (Given and Stell)\\
*Note: fluid: <math>f</math> (Madden and Glandt), `1'  (Given and Stell)
Note: matrix: $m$ (Madden and Glandt), `0'  (Given and Stell)\\
*Note: matrix: <math>m</math> (Madden and Glandt), `0'  (Given and Stell)
 
At very low matrix porosities, i.e. very high densities of matrix particles,
At very low matrix porosities, i.e. very high densities of matrix particles,
the volume accessible to fluid particles is divided into small cavities, each
the volume accessible to fluid particles is divided into small cavities, each
totally surrounded by a matrix. In this limit, the function <math>h_c (x)</math>
totally surrounded by a matrix. In this limit, the function $h_c (x)$
describes correlations between fluid particles in the same cavity and the  
describes correlations between fluid particles in the same cavity and the  
function <math>h_b(x)</math> describes correlations between particles in different cavities.
function $h_b(x)$ describes correlations between particles in different cavities.
==Polydisperse systems==
For a polydisperse fluid, composed of <math>n_f</math> components, in a polydisperse matrix,
composed of <math>n_m</math> components, written in matrix form in [[Fourier analysis |Fourier space]] (see Eq. 18 of Ref. 5):
 
:<math>\tilde{\mathbf H}_{mm} = \tilde{\mathbf C}_{mm} + \rho_m \tilde{\mathbf C}_{mm} \tilde{\mathbf H}_{mm}
</math>
 
:<math>\tilde{\mathbf H}_{fm} = \tilde{\mathbf C}_{fm} + \rho_m \tilde{\mathbf C}_{mm} \tilde{\mathbf H}_{fm} + \rho_f  \tilde{\mathbf C}_{fm}  \tilde{\mathbf H}_{ff} - \rho_f \tilde{\mathbf C}_{12}    \tilde{\mathbf H}_{fm}
</math>
 
:<math>\tilde{\mathbf H}_{ff} = \tilde{\mathbf C}_{ff} + \rho_m \tilde{\mathbf C}_{fm}^T \tilde{\mathbf H}_{fm} + \rho_f  \tilde{\mathbf C}_{ff}  \tilde{\mathbf H}{ff} - \rho_f \tilde{\mathbf C}_{12}  \tilde{\mathbf H}_{12}</math>
 
:<math>\tilde{\mathbf H}_{12} = \tilde{\mathbf C}_{12} + \rho_m \tilde{\mathbf C}_{fm}^T \tilde{\mathbf H}_{fm} + \rho_f  \tilde{\mathbf C}_{ff}  \tilde{\mathbf H}_{12} +
\rho_f  \tilde{\mathbf C}_{12}  \tilde{\mathbf H}_{ff} -2 \rho_f \tilde{\mathbf C}_{12}  \tilde{\mathbf H}_{12}</math>
 
Note: <math>{\mathbf c}_{fm} = {\mathbf c}_{mf}^T</math> and <math>{\mathbf h}_{fm} = {\mathbf h}_{mf}^T</math>.
 
==References==
#[http://dx.doi.org/10.1063/1.463883  James A. Given and George Stell "Comment on: Fluid distributions in two-phase random media: Arbitrary matrices", Journal of Chemical Physics '''97''' pp. 4573 (1992)]
#[http://dx.doi.org/10.1016/0378-4371(94)90200-3  James A. Given and George R. Stell "The replica Ornstein-Zernike equations and the structure of partly quenched media",Physica A '''209''' pp. 495-510 (1994)]
#[http://dx.doi.org/10.1007/BF01028471 W. G. Madden and E. D. Glandt "Distribution functions for fluids in random media", J. Stat. Phys. '''51''' pp. 537- (1988)]
#[http://dx.doi.org/10.1063/1.462726  William G. Madden, "Fluid distributions in random media: Arbitrary matrices",  Journal of Chemical Physics '''96''' pp. 5422 (1992)]
#[http://dx.doi.org/10.1080/0026897031000085128 S. Jorge;  Elisabeth Schöll-Paschinger;  Gerhard Kahl; María-José Fernaud "Structure and thermodynamic properties of a polydisperse fluid in contact with a polydisperse matrix", Molecular Physics '''101''' pp. 1733-1740 (2003)]
[[Category: Integral equations]]
Please note that all contributions to SklogWiki are considered to be released under the Creative Commons Attribution Non-Commercial Share Alike (see SklogWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)