Editing Q-TIP4P/F model of water

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
{{Lowercase title}}
{{stub-water}}
The '''q-TIP4P/F''' model
The '''q-TIP4P/F''' model
<ref>[http://dx.doi.org/10.1063/1.3167790 Scott Habershon, Thomas E. Markland, and David E. Manolopoulos "Competing quantum effects in the dynamics of a flexible water model", Journal of Chemical Physics '''131''' 024501 (2009)]</ref>
<ref>[http://dx.doi.org/10.1063/1.3167790 Scott Habershon, Thomas E. Markland, and David E. Manolopoulos "Competing quantum effects in the dynamics of a flexible water model", Journal of Chemical Physics '''131''' 024501 (2009)]</ref>
is a flexible version of the [[TIP4P/2005]] model of [[water]] designed for use in [[Path integral formulation | path integral]] simulations.  
is a flexible version of the [[TIP4P/2005]] model of [[water]] designed for use in [[Path integral formulation | path integral]] simulations. The melting point was found to be <math>251 \pm 1.5~K </math>  at 1 bar via [[Computation of phase equilibria#Direct simulation of the two phase system | direct coexistence]] calculations.
==Melting point==
The melting point was found to be <math>251 \pm 1.5~K </math>  at 1 bar via [[Computation of phase equilibria#Direct simulation of the two phase system | direct coexistence]] calculations, and at 257K from calculations of the [[Gibbs energy function]] <ref>[http://dx.doi.org/10.1039/C1CP21520E Scott Habershon and David E. Manolopoulos  "Free energy calculations for a flexible water model", Phys. Chem. Chem. Phys. '''13''' pp. 19714-19727 (2011)]</ref>.
==Isotope effects==
==Isotope effects==
Melting point (extract from the [[Ice Ih]] page)
Melting point (extract from the [[Ice Ih]] page)
Line 24: Line 22:
| <math>277.64  K</math> || 0.6629 kPa || <FONT COLOR="#9400D3">experimental value</FONT> || <ref>[http://dx.doi.org/10.1063/1.1565352 H. W. Xiang "Vapor Pressure and Critical Point of Tritium Oxide", Journal of Physical and Chemical Reference Data '''32''' pp. 1707.1711 (2003)]</ref>
| <math>277.64  K</math> || 0.6629 kPa || <FONT COLOR="#9400D3">experimental value</FONT> || <ref>[http://dx.doi.org/10.1063/1.1565352 H. W. Xiang "Vapor Pressure and Critical Point of Tritium Oxide", Journal of Physical and Chemical Reference Data '''32''' pp. 1707.1711 (2003)]</ref>
|}
|}
It is worth pointing out that the calculations presented in the work of Ramírez and  Herrero <ref name="Ramirez1"> </ref> used the melting point of the [[Q-TIP4P/F model of water | q-TIP4P/F model]] as its "reference state". It is perhaps more fruitful to examine the relative changes upon isotopic substitution: <math>\Delta T_m (D_2O - H_2 0) = 6.5 K</math> (experimental value: 3.68 K) and <math>\Delta T_m (T_2O - H_2 0) = 8.2 K</math> (experimental value: 4.49 K).
 
====Ice Ih====
Isotope effects have also been studied for [[ice Ih]] <ref>[http://dx.doi.org/10.1063/1.3559466 Carlos P. Herrero and Rafael Ramírez "Isotope effects in ice Ih: A path-integral simulation", Journal of Chemical Physics '''134''' 094510 (2011)]</ref>.
==References==
==References==
<references/>
<references/>
[[category: models]]
[[category: models]]
[[category: water]]
[[category: water]]
Please note that all contributions to SklogWiki are considered to be released under the Creative Commons Attribution Non-Commercial Share Alike (see SklogWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)

Template used on this page: