Editing Multi-particle collision dynamics

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
'''Multi-particle collision dynamics''' (MPC), also known as stochastic rotation dynamics (SRD)<ref>[http://dx.doi.org/10.1007/978-3-540-87706-6_1 G. Gompper, T. Ihle, K. Kroll and R. G. Winkler "Multi-Particle Collision Dynamics: A Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids", Advanced Computer Simulation Approaches for Soft Matter Sciences III, Advances in Polymer Science '''221''' p. 1 (2009)]</ref>, is a particle-based mesoscale [[Computer simulation techniques |simulation technique]] for [[complex fluids]] <ref>[http://dx.doi.org/10.1063/1.478857 A. Malevanets and R. Kapral "Mesoscopic model for solvent dynamics", Journal of Chemical Physics '''110''' pp. 8605-8613 (1999)]</ref>. Coupling of embedded particles to the [[Coarse graining |coarse-grained]] solvent is achieved through [[molecular dynamics]] <ref>[http://dx.doi.org/10.1063/1.481289 A. Malevanets and R. Kapral "Solute molecular dynamics in a mesoscale solvent", Journal of Chemical Physics '''112''' pp. 7260-7269 (2000)]</ref>.
{{Stub-general}}
[[Category:Computer simulation techniques]]
 
Multi-particle collision dynamics (MPC), also known as stochastic rotation dynamics (SRD)<ref>[http://dx.doi.org/10.1007/978-3-540-87706-6_1 G. Gompper, T. Ihle, K. Kroll and R. G. Winkler "Multi-Particle Collision Dynamics: A Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids", Advanced Computer Simulation Approaches for Soft Matter Sciences III, Advances in Polymer Science '''221''' p. 1 (2009)]</ref>, is a particle-based mesoscale simulation technique for complex fluids <ref>[http://dx.doi.org/10.1063/1.478857 A. Malevanets and R. Kapral "Mesoscopic model for solvent dynamics", Journal of Chemical Physics '''110''' pp. 8605-8613 (1999)]</ref>. Coupling of embedded particles to the coarse-grained solvent is achieved through [[molecular dynamics]] <ref>[http://dx.doi.org/10.1063/1.481289 A. Malevanets and R. Kapral "Solute molecular dynamics in a mesoscale solvent", Journal of Chemical Physics '''112''' pp. 7260-7269 (2000)]</ref>.
==Method of simulation==
==Method of simulation==
The solvent is modelled as a set of <math>N</math> point particles of mass <math>m</math> with continuous coordinates <math>\vec{r}_{i}</math> and velocities <math>\vec{v}_{i}</math>. The simulation consists of streaming and collision steps.
The solvent is modelled as a set of <math>N</math> point particles of mass <math>m</math> with continuous coordinates <math>\vec{r}_{i}</math> and velocities <math>\vec{v}_{i}</math>. The simulation consists of streaming and collision steps.
Line 5: Line 8:
During the streaming step, the coordinates of the particles are updated according to
During the streaming step, the coordinates of the particles are updated according to


:<math>\vec{r}_{i}(t+\delta t_{\mathrm{MPC}}) = \vec{r}_{i}(t) + \vec{v}_{i}(t) \delta t_{\mathrm{MPC}}</math>
<math>\vec{r}_{i}(t+\delta t_{\mathrm{MPC}}) = \vec{r}_{i}(t) + \vec{v}_{i}(t) \delta t_{\mathrm{MPC}}</math>


where <math>\delta t_{\mathrm{MPC}}</math> is a chosen simulation [[time step]] which is typically much larger than a molecular dynamics time step.
where <math>\delta t_{\mathrm{MPC}}</math> is a chosen simulation time step which is typically much larger than a molecular dynamics [[time step]].


After the streaming step, interactions between the solvent particles are modelled in the collision step. The particles are sorted into collision cells with a lateral size <math>a</math>. Particle velocities within each cell are updated according to the collision rule
After the streaming step, interactions between the solvent particles are modelled in the collision step. The particles are sorted into collision cells with a lateral size <math>a</math>. Particle velocities within each cell are updated according to the collision rule
Line 15: Line 18:
where <math>\vec{v}_{\mathrm{CMS}}</math> is the centre of mass velocity of the particles in the collision cell and <math>\hat{\mathbf{R}}</math> is a rotation matrix. In two dimensions, <math>\hat{\mathbf{R}}</math> performs a rotation by an angle <math>+\alpha</math> or <math>-\alpha</math> with probability <math>1/2</math>. In three dimensions, the rotation is performed by an angle <math>\alpha</math> around a random rotation axis. The same rotation is applied for all particles within a given collision cell, but the direction (axis) of rotation is statistically independent both between all cells and for a given cell in time.
where <math>\vec{v}_{\mathrm{CMS}}</math> is the centre of mass velocity of the particles in the collision cell and <math>\hat{\mathbf{R}}</math> is a rotation matrix. In two dimensions, <math>\hat{\mathbf{R}}</math> performs a rotation by an angle <math>+\alpha</math> or <math>-\alpha</math> with probability <math>1/2</math>. In three dimensions, the rotation is performed by an angle <math>\alpha</math> around a random rotation axis. The same rotation is applied for all particles within a given collision cell, but the direction (axis) of rotation is statistically independent both between all cells and for a given cell in time.


If the structure of the collision grid defined by the positions of the collision cells is fixed, [[Galilean invariance]] is violated. It is restored with the introduction of a random shift of the collision grid <ref>[http://dx.doi.org/10.1103/PhysRevE.67.066705 T. Ihle and D. Kroll "Stochastic rotation dynamics. I. Formalism, Galilean invariance, and Green-Kubo relations", Physical Review E '''67''' 066705 (2003)]</ref>.
If the structure of the collision grid defined by the positions of the collision cells is fixed, [[Galilean invariance]] is violated. If is restored with the introduction of a random shift of the collision grid <ref>[http://dx.doi.org/10.1103/PhysRevE.67.066705 T. Ihle and D. Kroll "Stochastic rotation dynamics. I. Formalism, Galilean invariance, and Green-Kubo relations", Physical Review E '''67''' 066705 (2003)]</ref>.


==References==
==References==
<references/>
<references/>
[[Category:Computer simulation techniques]]
Please note that all contributions to SklogWiki are considered to be released under the Creative Commons Attribution Non-Commercial Share Alike (see SklogWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)