Editing Hard tetrahedron model

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 4: Line 4:
It has recently been shown that regular tetrahedra are able to achieve packing fractions as high as <math>\phi=0.8503</math><ref>[http://dx.doi.org/10.1038/nature08641 Amir Haji-Akbari, Michael Engel, Aaron S. Keys, Xiaoyu Zheng, Rolfe G. Petschek, Peter Palffy-Muhoray  and  Sharon C. Glotzer "Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra", Nature '''462''' pp. 773-777 (2009)]</ref> (the [[hard sphere model |hard sphere]] packing fraction is  <math>\pi/(3 \sqrt{2}) \approx 74.048%</math> <ref>[http://dx.doi.org/10.1038/26609 Neil J. A. Sloane "Kepler's conjecture confirmed", Nature '''395''' pp. 435-436 (1998)]</ref>). This is in stark contrast to work as recent as in 2006, where it was suggested that the "...regular tetrahedron might even be the convex body having the smallest possible packing density"<ref>[http://dx.doi.org/10.1073/pnas.0601389103 J. H. Conway and S. Torquato "Packing, tiling, and covering with tetrahedra", Proceedings of the National Academy of Sciences of the United States of America '''103''' 10612-10617 (2006)]</ref>.
It has recently been shown that regular tetrahedra are able to achieve packing fractions as high as <math>\phi=0.8503</math><ref>[http://dx.doi.org/10.1038/nature08641 Amir Haji-Akbari, Michael Engel, Aaron S. Keys, Xiaoyu Zheng, Rolfe G. Petschek, Peter Palffy-Muhoray  and  Sharon C. Glotzer "Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra", Nature '''462''' pp. 773-777 (2009)]</ref> (the [[hard sphere model |hard sphere]] packing fraction is  <math>\pi/(3 \sqrt{2}) \approx 74.048%</math> <ref>[http://dx.doi.org/10.1038/26609 Neil J. A. Sloane "Kepler's conjecture confirmed", Nature '''395''' pp. 435-436 (1998)]</ref>). This is in stark contrast to work as recent as in 2006, where it was suggested that the "...regular tetrahedron might even be the convex body having the smallest possible packing density"<ref>[http://dx.doi.org/10.1073/pnas.0601389103 J. H. Conway and S. Torquato "Packing, tiling, and covering with tetrahedra", Proceedings of the National Academy of Sciences of the United States of America '''103''' 10612-10617 (2006)]</ref>.
==Phase diagram==
==Phase diagram==
<ref>[http://dx.doi.org/10.1063/1.3651370 Amir Haji-Akbari, Michael Engel, and Sharon C. Glotzer "Phase diagram of hard tetrahedra", Journal of Chemical Physics '''135''' 194101 (2011)]</ref>
<ref>[http://arxiv.org/abs/1106.4765 Amir Haji-Akbari, Michael Engel, Sharon C. Glotzer "Phase Diagram of Hard Tetrahedra", arXiv:1106.4765v2 Sat, 2 Jul (2011)]</ref>
==Truncated tetrahedra==
==Truncated tetrahedra==
Dimers composed of Archimedean truncated tetrahedra  are able to achieve packing fractions as high as <math>\phi= 207/208 \approx 0.9951923</math>
Dimers composed of Archimedean truncated tetrahedra  are able to achieve packing fractions as high as <math>\phi= 207/208 \approx 0.9951923</math>
Please note that all contributions to SklogWiki are considered to be released under the Creative Commons Attribution Non-Commercial Share Alike (see SklogWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)