Editing Hard superball model

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 2: Line 2:
[[Image:phase_diagram_superball.png|thumb|right|Phase diagram for hard superballs in the <math>\phi</math> (packing fraction) versus 1/''q'' (bottom axis) and ''q'' (top axis) representation where ''q'' is the deformation parameter [2].]]
[[Image:phase_diagram_superball.png|thumb|right|Phase diagram for hard superballs in the <math>\phi</math> (packing fraction) versus 1/''q'' (bottom axis) and ''q'' (top axis) representation where ''q'' is the deformation parameter [2].]]


The '''hard superball model'''  is defined by the inequality
A superball is defined by the inequality


:<math>|x|^{2q} + |y|^{2q} +|z|^{2q}  \le a^{2q}</math>  
:<math>\left|\frac{x}{a}\right|^{2q} + \left|\frac{y}{a}\right|^{2q} +\left|\frac{z}{a}\right|^{2q}  \le 1</math>  


where ''x'', ''y'' and ''z'' are scaled Cartesian coordinates with ''q'' the deformation parameter and radius ''a''. The shape of the superball interpolates smoothly between two Platonic solids, namely the octahedron (''q'' = 0.5) and the [[Hard cube model |cube]] (''q'' = ∞) via the [[Hard sphere model |sphere]] (''q'' = 1) as shown in the right figure.
where ''x'', ''y'' and ''z'' are scaled Cartesian coordinates with ''q'' the deformation parameter and radius ''a''. The shape of the superball interpolates smoothly between two Platonic solids, namely the octahedron (''q'' = 0.5) and the cube (''q'' = ∞) via the sphere (''q'' = 1) as shown in the left figure.


== Particle Volume  ==  
== Particle Volume  ==  
Line 12: Line 12:


:<math>
:<math>
\begin{align}
\begin{eqnarray}
         v(q,a) & =  & 8 a^3 \int_{0}^1 \int_{0}^{(1-x^{2q})^{1/2q}} (1-x^{2q}-y^{2q})^{1/2q} \mathrm{d}\, y \, \mathrm{d}\, x = \frac{2a^3\left[ \Gamma\left(1/2q\right) \right]^3}{3q^2\Gamma\left(3/2q\right)},
         v(q,a) & =  & 8 a^3 \int_{0}^1 \int_{0}^{(1-x^{2q})^{1/2q}} (1-x^{2q}-y^{2q})^{1/2q} \mathrm{d}\, y \, \mathrm{d}\, x \nonumber\\
\end{align}
        & = & \frac{8a^3\left[ \Gamma\left(1+1/2q\right) \right]^3}{\Gamma\left(1+ 3/2q\right)},
\end{eqnarray}
</math>
</math>
where <math>\Gamma</math> is the [[Gamma function]].
where <math>\Gamma</math> is the Gamma function.


==Overlap algorithm==
==Overlap algorithm==
The most widely used overlap algorithm is on the basis of Perram and Wertheim method <ref>[http://dx.doi.org/10.1016/0021-9991(85)90171-8  John W. Perram and M. S. Wertheim "Statistical mechanics of hard ellipsoids. I. Overlap algorithm and the contact function", Journal of Computational Physics  '''58''' pp. 409-416 (1985)]</ref> <ref name="superballs">[http://dx.doi.org/10.1039/C2SM25813G  R. Ni, A.P. Gantapara, J. de Graaf, R. van Roij, and M. Dijkstra "Phase diagram of colloidal hard superballs: from cubes via spheres to octahedra", Soft Matter '''8''' pp. 8826-8834 (2012)]</ref>.
The most widely used overlap algorithm is on the basis of Perram and Wertheim method<ref>[http://dx.doi.org/10.1016/0021-9991(85)90171-8  John W. Perram and M. S. Wertheim "Statistical mechanics of hard ellipsoids. I. Overlap algorithm and the contact function", Journal of Computational Physics  '''58''' pp. 409-416 (1985)]</ref> <ref>[http://dx.doi.org/10.1039/C2SM25813G  R. Ni, A.P. Gantapara, J. de Graaf, R. van Roij, and M. Dijkstra "Phase diagram of colloidal hard superballs: from cubes via spheres to octahedra", Soft Matter '''8''' pp. 8826-8834 (2012)]</ref>.


==Phase diagram==
==Phase diagram==
The full [[phase diagrams |phase diagram]] of hard superballs whose shape interpolates from cubes to octahedra was reported in Ref <ref name="superballs"></ref>.
The full phase diagram of hard superballs whose shape interpolates from cubes to octahedra was reported in Ref.[2].


==References==
==References==
<references/>
<references/>
[[Category: Models]]
Please note that all contributions to SklogWiki are considered to be released under the Creative Commons Attribution Non-Commercial Share Alike (see SklogWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)