Equations of state for crystals of hard spheres: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
Line 7: Line 7:
where <math>\alpha = (V-V_0)/V_0</math> where <math>V_0</math> is the volume at close packing, <math>p</math> is the [[pressure]], <math>T</math> is the [[temperature]] and <math>k_B</math> is the [[Boltzmann constant]].
where <math>\alpha = (V-V_0)/V_0</math> where <math>V_0</math> is the volume at close packing, <math>p</math> is the [[pressure]], <math>T</math> is the [[temperature]] and <math>k_B</math> is the [[Boltzmann constant]].


==Hall equation of state==
==Hall equation of state (face-centred cubic)==
<ref>[http://dx.doi.org/10.1063/1.1678576  Kenneth R. Hall "Another Hard-Sphere Equation of State", Journal of Chemical Physics  '''57''' pp. 2252-2254 (1972)]</ref> Eq. 12:
<ref>[http://dx.doi.org/10.1063/1.1678576  Kenneth R. Hall "Another Hard-Sphere Equation of State", Journal of Chemical Physics  '''57''' pp. 2252-2254 (1972)]</ref> Eq. 12:
:<math>Z_{\mathrm{solid}}= \frac{1+y+y^2-0.67825y^3-y^4-0.5y^5-6.028e^{\xi(7.9-3.9\xi)}y^6}{1-3y+3y^2-1.04305y^3}</math>
:<math>Z_{\mathrm{solid}}= \frac{1+y+y^2-0.67825y^3-y^4-0.5y^5-6.028e^{\xi(7.9-3.9\xi)}y^6}{1-3y+3y^2-1.04305y^3}</math>
where
where
:<math>\xi = \pi \sqrt{2}/6-y</math>
:<math>\xi = \pi \sqrt{2}/6-y</math>
==Speedy equation of state==
==Speedy equation of state==
(<ref>[http://dx.doi.org/10.1088/0953-8984/10/20/006 Robin J. Speedy "Pressure and entropy of hard-sphere crystals", Journal of  Physics: Condensed Matter '''10''' pp. 4387-4391 (1998)]</ref>, Eq. 2)
(<ref>[http://dx.doi.org/10.1088/0953-8984/10/20/006 Robin J. Speedy "Pressure and entropy of hard-sphere crystals", Journal of  Physics: Condensed Matter '''10''' pp. 4387-4391 (1998)]</ref>, Eq. 2)

Revision as of 14:52, 13 May 2009

The stable phase of the hard sphere model at high densities is thought to have a face-centered cubic structure. A number of equations of state have been proposed for this system. The usual procedure to obtain precise equations of state is to fit computer simulation results.

Alder, Hoover and Young equation of state (face-centred cubic solid)

[1]

where where is the volume at close packing, is the pressure, is the temperature and is the Boltzmann constant.

Hall equation of state (face-centred cubic)

[2] Eq. 12:

where

Speedy equation of state

([3], Eq. 2)

where

and (Table 1)

Crystal structure
hexagonal close packed 0.5935 0.7080 0.601
face-centred cubic 0.5921 0.7072 0.601

Almarza equation of state

For the face-centred cubic solid phase [4] Eq. 19:

,

where is the volume per particle, is the volume per particle at close packing, and .

References

This page contains numerical values and/or equations. If you intend to use ANY of the numbers or equations found in SklogWiki in any way, you MUST take them from the original published article or book, and cite the relevant source accordingly.