Editing Detailed balance

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 32: Line 32:
:<math>\pi(s') P(s',s) = \pi(s) P(s,s')\,.</math>
:<math>\pi(s') P(s',s) = \pi(s) P(s,s')\,.</math>


A Markov process that has detailed balance is said to be a ''reversible Markov process'' or ''reversible Markov chain'' <ref name=OHagan />.
A Markov process that has detailed balance is said to be a '''reversible Markov process''' or '''reversible Markov chain'''.<ref name=OHagan />


The detailed balance condition is stronger than that required merely for a stationary distribution; that is, there are Markov processes with stationary distributions that do not have detailed balance.  Detailed balance implies that, around any closed cycle of states, there is no net flow of probability. For example, it implies that, for all ''a'', ''b'' and ''c'',
The detailed balance condition is stronger than that required merely for a stationary distribution; that is, there are Markov processes with stationary distributions that do not have detailed balance.  Detailed balance implies that, around any closed cycle of states, there is no net flow of probability. For example, it implies that, for all ''a'', ''b'' and ''c'',
Line 150: Line 150:
The inequality holds because the logarithm function is monotonic, hence, the expressions <math>\ln w_r^+-\ln w_r^-</math> and <math>w_r^+-w_r^-</math> always have the same sign.
The inequality holds because the logarithm function is monotonic, hence, the expressions <math>\ln w_r^+-\ln w_r^-</math> and <math>w_r^+-w_r^-</math> always have the same sign.


Similar inequalities <ref name=Yab1991/> are valid for other classical conditions for the closed systems and the corresponding characteristic functions: for [[Isothermal-isobaric ensemble |isothermal isobaric conditions]] the [[Gibbs energy function]]  decreases, for [[Microcanonical ensemble |isochoric systems with  constant internal energy]]  the entropy increases as well as for [[Isoenthalpic–isobaric ensemble |isobaric systems with the constant enthalpy]].
Similar inequalities <ref name=Yab1991/> are valid for other classical conditions for the closed systems and the corresponding characteristic functions: for [[Isothermal-isobaric ensemble |isothermal isobaric conditions]] the [[Gibbs energy function]]  decreases, for [[Microcanonical ensemble |isochoric systems with  constant internal energy]]  the entropy increases as well as for isobaric systems with the constant [[enthalpy]].


== Onsager reciprocal relations and detailed balance ==
== Onsager reciprocal relations and detailed balance ==
Let the principle of detailed balance be valid. Then, in the linear approximation near equilibrium the reaction rates for the generalized mass action law are
Let the principle of detailed balance be valid. Then, in the linear approximation near equilibrium the reaction rates for the generalized mass action law are
:<math>w^+_r=w^{\rm eq}_r \left(1+\sum_i \frac{\alpha_{ri}(\mu_i-\mu^{\rm eq}_i)}{RT}\right); \;\; w^-_r=w^{\rm eq}_r  \left(1+ \sum_i \frac{\beta_{ri}(\mu_i-\mu^{\rm eq}_i)}{RT}\right);</math>
:<math>w^+_r=w^{\rm eq}_r \left(1+\sum_i \frac{\alpha_{ri}(\mu_i-\mu^{\rm eq}_i)}{RT}\right); \;\; w^-_r=w^{\rm eq}_r  \left(1+ \sum_i \frac{\beta_{ri}(\mu_i-\mu^{\rm eq}_i)}{RT}\right);</math>
Line 171: Line 172:


==Semi-detailed balance==
==Semi-detailed balance==
To formulate the principle of semi-detailed balance, it is convenient to count the direct and inverse elementary reactions separately. In this case, the kinetic equations have the form:
To formulate the principle of semi-detailed balance, it is convenient to count the direct and inverse elementary reactions separately. In this case, the kinetic equations have the form:


Please note that all contributions to SklogWiki are considered to be released under the Creative Commons Attribution Non-Commercial Share Alike (see SklogWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)