Editing Critical exponents

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
'''Critical exponents'''. Groups of critical exponents form [[universality classes]].
==Reduced distance: <math>\epsilon</math>==
==Reduced distance: <math>\epsilon</math>==
<math>\epsilon</math> is the reduced distance from the critical [[temperature]], i.e.
<math>\epsilon</math> is the reduced distance from the critical [[temperature]], i.e.
Line 19: Line 18:
:<math>\left. m\right. = m_0 \epsilon^\beta</math>
:<math>\left. m\right. = m_0 \epsilon^\beta</math>


Theoretically one has <math>\beta =0.32653(10)</math><ref name="Campostrini2002"> </ref> for the [[Universality classes#Ising |three dimensional Ising model]],  and <math>\beta = 0.3485(2)</math><ref name="Campostrini2001"> </ref> for the three-dimensional XY universality class.
Theoretically one has <math>\beta =0.32653(10)</math><ref name="Campostrini2002"> </ref> for the three dimensional Ising model,  and <math>\beta = 0.3485(2)</math><ref name="Campostrini2001"> </ref> for the three-dimensional XY universality class.
 
==Susceptibility exponent: <math>\gamma</math>==
==Susceptibility exponent: <math>\gamma</math>==
[[Susceptibility]]  
[[Susceptibility]]  
Line 26: Line 24:
:<math>\left. \chi \right. = \chi_0 \epsilon^{-\gamma}</math>
:<math>\left. \chi \right. = \chi_0 \epsilon^{-\gamma}</math>


Theoretically one has <math>\gamma = 1.2373(2)</math><ref name="Campostrini2002"> </ref> for the [[Universality classes#Ising |three dimensional Ising model]],  and <math>\gamma = 1.3177(5)</math><ref name="Campostrini2001"> </ref> for the three-dimensional XY universality class.
Theoretically one has <math>\gamma = 1.2373(2)</math><ref name="Campostrini2002"> </ref> for the three dimensional Ising model,  and <math>\gamma = 1.3177(5)</math><ref name="Campostrini2001"> </ref> for the three-dimensional XY universality class.
==Correlation length==
==Correlation length==


:<math>\left. \xi \right.= \xi_0 \epsilon^{-\nu}</math>
:<math>\left. \xi \right.= \xi_0 \epsilon^{-\nu}</math>


Theoretically one has <math>\nu = 0.63012(16)</math><ref name="Campostrini2002"> </ref>  for the [[Universality classes#Ising |three dimensional Ising model]],  and <math>\nu = 0.67155(27)</math><ref name="Campostrini2001"> </ref>  for the three-dimensional XY universality class.
Theoretically one has <math>\nu = 0.63012(16)</math><ref name="Campostrini2002"> </ref>  for the three dimensional Ising model,  and <math>\nu = .671 55(27)</math><ref name="Campostrini2001"> </ref>  for the three-dimensional XY universality class.
==Inequalities==
==Rushbrooke equality==
====Fisher inequality====
The Rushbrooke equality <ref>[http://dx.doi.org/10.1063/1.1734338 G. S. Rushbrooke "On the Thermodynamics of the Critical Region for the Ising Problem", Journal of Chemical Physics  39, 842-843 (1963)]</ref> , proposed by Essam and Fisher (Eq. 38 <ref>[http://dx.doi.org/10.1063/1.1733766 John W. Essam and Michael E. Fisher "Padé Approximant Studies of the Lattice Gas and Ising Ferromagnet below the Critical Point", Journal of Chemical Physics  38, 802-812 (1963)]</ref>) is given by
The Fisher inequality (Eq. 5 <ref>[http://dx.doi.org/10.1103/PhysRev.180.594 Michael E. Fisher "Rigorous Inequalities for Critical-Point Correlation Exponents", Physical Review '''180''' pp. 594-600 (1969)]</ref>)
 
:<math>\gamma \le (2-\eta) \nu</math>
====Griffiths inequality====
The Griffiths inequality (Eq. 3 <ref>[http://dx.doi.org/10.1103/PhysRevLett.14.623 Robert B. Griffiths "Thermodynamic Inequality Near the Critical Point for Ferromagnets and Fluids", Physical Review Letters '''14''' 623-624 (1965)]</ref>):
 
:<math>(1+\delta)\beta \ge 2-\alpha'</math>
====Josephson inequality====
The Josephson inequality <ref>[http://dx.doi.org/10.1088/0370-1328/92/2/301 B. D. Josephson "Inequality for the specific heat: I. Derivation", Proceedings of the Physical Society '''92''' pp.  269-275 (1967)]</ref><ref>[http://dx.doi.org/10.1088/0370-1328/92/2/302 B. D. Josephson "Inequality for the specific heat: II. Application to critical phenomena", Proceedings of the Physical Society '''92''' pp. 276-284 (1967)]</ref><ref>[http://dx.doi.org/10.1007/BF01008478 Alan D. Sokal "Rigorous proof of the high-temperature Josephson inequality for critical exponents", Journal of Statistical Physics '''25''' pp. 51-56 (1981)]</ref>
:<math>d\nu \ge 2-\alpha</math>
====Liberman inequality====
<ref>[http://dx.doi.org/10.1063/1.1726488 David A. Liberman "Another Relation Between Thermodynamic Functions Near the Critical Point of a Simple Fluid", Journal of Chemical Physics '''44''' 419-420 (1966)]</ref>
====Rushbrooke inequality====
The Rushbrooke inequality (Eq. 2 <ref>[http://dx.doi.org/10.1063/1.1734338 G. S. Rushbrooke "On the Thermodynamics of the Critical Region for the Ising Problem", Journal of Chemical Physics  39, 842-843 (1963)]</ref>), based on the work of  Essam and Fisher (Eq. 38 <ref>[http://dx.doi.org/10.1063/1.1733766 John W. Essam and Michael E. Fisher "Padé Approximant Studies of the Lattice Gas and Ising Ferromagnet below the Critical Point", Journal of Chemical Physics  38, 802-812 (1963)]</ref>) is given by


:<math>\alpha' + 2\beta + \gamma'  \ge 2</math>.
:<math>\alpha + 2\beta + \gamma =2</math>.


Using the above-mentioned values<ref name="Campostrini2002"> </ref> one has:
Using the above-mentioned values one has:


:<math>0.1096 + (2\times0.32653) + 1.2373 = 1.99996</math>  
:<math>0.1096 + (2\times0.32653) + 1.2373 = 1.99996</math>  
====Widom inequality====
The Widom inequality <ref>[http://dx.doi.org/10.1063/1.1726135 B. Widom "Degree of the Critical Isotherm", Journal of Chemical Physics '''41''' pp. 1633-1634 (1964)]</ref>
:<math>\gamma' \ge \beta(\delta -1)</math>
==Hyperscaling==
==Gamma divergence==
==Gamma divergence==
When approaching the critical point along the critical isochore (<math>T > T_c</math>) the divergence is of the form
When approaching the critical point along the critical isochore (<math>T > T_c</math>) the divergence is of the form


:<math>\left. \right. \kappa_T \sim (T-T_c)^{-\gamma} \sim (p-p_c)^{-\gamma}</math>
:<math>\left. \right. C_p \sim \kappa_T \sim (T-T_c)^{-\gamma} \sim (p-p_c)^{-\gamma}</math>


where <math>\kappa_T</math> is the [[Compressibility#Isothermal compressibility | isothermal compressibility]]. <math>\gamma</math> is 1.0 for the [[Van der Waals equation of state#Critical exponents | Van der Waals equation of state]], and is usually 1.2 to 1.3.
where <math>\gamma</math> is 1.0 for the [[Van der Waals equation of state]], and is usually 1.2 to 1.3.


==Epsilon divergence==
==Epsilon divergence==
Line 73: Line 51:


where <math>\epsilon</math> is 2/3 for the [[Van der Waals equation of state]], and is usually 0.75 to 0.8.
where <math>\epsilon</math> is 2/3 for the [[Van der Waals equation of state]], and is usually 0.75 to 0.8.
==See also==
*[[Universality classes]]
==References==
==References==
<references/>
<references/>
[[category: statistical mechanics]]
[[category: statistical mechanics]]
Please note that all contributions to SklogWiki are considered to be released under the Creative Commons Attribution Non-Commercial Share Alike (see SklogWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)