Editing Computational implementation of integral equations

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 139: Line 139:


(see Blum and Torruella Eq. 5.6 in Ref. 7 or Lado Eq. 39 in Ref. 3),
(see Blum and Torruella Eq. 5.6 in Ref. 7 or Lado Eq. 39 in Ref. 3),
where <math>J_l(x)</math> is a [[Bessel functions |Bessel function]] of order <math>l</math>.
where <math>J_l(x)</math> is a [[Bessel function]] of order <math>l</math>.
`step-down' operations can be performed by way of sin and cos operations
`step-down' operations can be performed by way of sin and cos operations
of Fourier transforms, see Eqs. 49a, 49b, 50 of Lado  Ref. 3.
of Fourier transforms, see Eqs. 49a, 49b, 50 of Lado  Ref. 3.
Line 149: Line 149:


:<math>f(r)=2\pi \int_0^\infty g(q) J_0(2 \pi qr)q ~{\rm d}q</math>
:<math>f(r)=2\pi \int_0^\infty g(q) J_0(2 \pi qr)q ~{\rm d}q</math>


====Conversion from the spatial reference frame back to the  axial reference frame====
====Conversion from the spatial reference frame back to the  axial reference frame====
Please note that all contributions to SklogWiki are considered to be released under the Creative Commons Attribution Non-Commercial Share Alike (see SklogWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)