Editing Computational implementation of integral equations

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
Integral equations are solved numerically.
Integral equations are solved numerically.
One has the [[Ornstein-Zernike relation]], <math>\gamma (12)</math>
One has the [[Ornstein-Zernike relation]], <math>\gamma (12)</math>
and a [[closure relations | closure relation]], <math>c_2 (12)</math> (which
and a [[Closures | closure relation]], <math>c_2 (12)</math> (which
incorporates the [[bridge function]] <math>B(12)</math>).
incorporates the [[bridge function]] <math>B(12)</math>).
The numerical solution is iterative;  
The numerical solution is iterative;  
Line 46: Line 46:
====Evaluate====
====Evaluate====
Evaluations of  <math>\gamma (12)</math> are performed at the discrete points <math>x_{i_1}x_{i_2},y_j,z_{k_1}z_{k_2}</math>
Evaluations of  <math>\gamma (12)</math> are performed at the discrete points <math>x_{i_1}x_{i_2},y_j,z_{k_1}z_{k_2}</math>
where the <math>x_i</math> are the <math>\nu</math> roots of the [[Legendre polynomials |Legendre polynomial]] <math>P_\nu(cos \theta)</math>
where the <math>x_i</math> are the <math>\nu</math> roots of the [[Legendre polynomial]] <math>P_\nu(cos \theta)</math>
where <math>y_j</math> are the  <math>\nu</math> roots of the [[Chebyshev polynomials |Chebyshev polynomial]] <math>T_{\nu}(\ cos \phi)</math>
where <math>y_j</math> are the  <math>\nu</math> roots of the [[Chebyshev polynomial]] <math>T_{\nu}(\ cos \phi)</math>
and where <math>z_{1_k},z_{2_k}</math>  are the  <math>\nu</math> roots of the Chebyshev polynomial
and where <math>z_{1_k},z_{2_k}</math>  are the  <math>\nu</math> roots of the [[Chebyshev polynomial]]
<math>T_{\nu}(\ cos \chi)</math>
<math>T_{\nu}(\ cos \chi)</math>
thus
thus
Line 139: Line 139:


(see Blum and Torruella Eq. 5.6 in Ref. 7 or Lado Eq. 39 in Ref. 3),
(see Blum and Torruella Eq. 5.6 in Ref. 7 or Lado Eq. 39 in Ref. 3),
where <math>J_l(x)</math> is a [[Bessel functions |Bessel function]] of order <math>l</math>.
where <math>J_l(x)</math> is a [[Bessel function]] of order <math>l</math>.
`step-down' operations can be performed by way of sin and cos operations
`step-down' operations can be performed by way of sin and cos operations
of Fourier transforms, see Eqs. 49a, 49b, 50 of Lado  Ref. 3.
of Fourier transforms, see Eqs. 49a, 49b, 50 of Lado  \cite{MP_1982_47_0283}.
The  Fourier-Bessel transform is also known as a '''Hankel transform'''.
The  Fourier-Bessel transform is also known as a '''Hankel transform'''.
It is equivalent to a two-dimensional Fourier transform with a radially symmetric integral kernel.
It is equivalent to a two-dimensional Fourier transform with a radially symmetric integral kernel.
Line 149: Line 149:


:<math>f(r)=2\pi \int_0^\infty g(q) J_0(2 \pi qr)q ~{\rm d}q</math>
:<math>f(r)=2\pi \int_0^\infty g(q) J_0(2 \pi qr)q ~{\rm d}q</math>


====Conversion from the spatial reference frame back to the  axial reference frame====
====Conversion from the spatial reference frame back to the  axial reference frame====
Line 169: Line 170:
:<math>\tilde{\gamma}(k)= \frac{\rho \tilde{c}_2 (k)^2}{1- \rho  \tilde{c}_2 (k)}</math>
:<math>\tilde{\gamma}(k)= \frac{\rho \tilde{c}_2 (k)^2}{1- \rho  \tilde{c}_2 (k)}</math>


For molecular fluids (see Eq. 19 of Lado Ref. 3)
For molecular fluids (see Eq. 19 of Lado \cite{MP_1982_47_0283})


:<math>\tilde{{\mathbf S}}_{m}(k) = (-1)^{m}\rho \left[{\mathbf I} - (-1)^{m} \rho \tilde{\mathbf C}_{m}(k) \right]^{-1} \tilde{\mathbf C}_{m}(k)\tilde{\mathbf C}_{m}(k)</math>


where <math>\tilde{{\mathbf S}}_{m}(k)</math> and <math>\tilde{\mathbf C}_{m}(k)</math> are matrices
:<math>\tilde{S}_{m}(k) = (-1)^{m}\rho \left[I - (-1)^{m} \rho \tilde C_{m}(k) \right]^{-1} \tilde C_{m}(k)\tilde C_{m}(k)
</math>
where <math>\tilde {S}_{m}(k)</math> and <math>\tilde C_{m}(k)</math> are matrices
with elements <math>\tilde S_{l_1 l_2 m}(k), \tilde{C}_{l_1 l_2 m}(k), l_1,l_2 \geq m</math>.
with elements <math>\tilde S_{l_1 l_2 m}(k), \tilde{C}_{l_1 l_2 m}(k), l_1,l_2 \geq m</math>.
For mixtures of simple fluids  (see \cite{JCP_1988_88_07715} and the thesis of Juan Antonio Anta pp. 107--109):


For mixtures of simple fluids (see Ref. 10 Juan Antonio Anta PhD thesis pp. 107--109):
<math>\tilde \Gamma (k) =  D  \left[ I - D  \tilde C(k)\right]^{-1} \tilde C(k)\tilde C(k)</math>


:<math>\tilde{\Gamma}(k) =  {\mathbf D}  \left[{\mathbf I} -  {\mathbf D}  \tilde{\mathbf C}(k)\right]^{-1} \tilde{\mathbf C}(k)\tilde{\mathbf C}(k)</math>


===Conversion back from Fourier space to Real space===
===Conversion back from Fourier space to Real space===
:<math>\tilde{\gamma}_{mns}^{\mu \nu} (k)  \rightarrow \gamma_{mns}^{\mu \nu} (r)</math>  
<math>\tilde{\gamma}_{mns}^{\mu \nu} (k)  \rightarrow \gamma_{mns}^{\mu \nu} (r)</math>  
(basically the inverse of step 2).
(basically the inverse of step 2).
====Axial reference frame to spatial reference frame====
====Axial reference frame to spatial reference frame====
:<math>\tilde{\gamma}_{mns}^{\mu \nu} (k) \rightarrow  \tilde{\gamma}^{mnl}_{\mu \nu} (k)</math>
:<math>\tilde{\gamma}_{mns}^{\mu \nu} (k) \rightarrow  \tilde{\gamma}^{mnl}_{\mu \nu} (k)</math>
====Inverse Fourier-Bessel transform====
====Inverse Fourier-Bessel transform====
:<math>\tilde{\gamma}^{mnl}_{\mu \nu} (k) \rightarrow  \gamma^{mnl}_{\mu \nu} (r)</math>  
:<math>\tilde{\gamma}^{mnl}_{\mu \nu} (k) \rightarrow  \gamma^{mnl}_{\mu \nu} (r)</math> `Step-up' operations are given by Eq. 53 of \cite{MP_1982_47_0283}. The inverse Hankel transform is
'Step-up' operations are given by Eq. 53 of Ref. 3. The inverse Hankel transform is
:<math>\gamma(r;l_1 l_2 l n_1 n_2)= \frac{1}{2 \pi^2 i^l} \int_0^\infty  \tilde{\gamma}(k;l_1 l_2 l n_1 n_2) J_l (kr) ~k^2 {\rm d}k</math>
:<math>\gamma(r;l_1 l_2 l n_1 n_2)= \frac{1}{2 \pi^2 i^l} \int_0^\infty  \tilde{\gamma}(k;l_1 l_2 l n_1 n_2) J_l (kr) ~k^2 {\rm d}k</math>
====Change from  spatial reference frame back to  axial reference frame====
====Change from  spatial reference frame back to  axial reference frame====
:<math>\gamma^{mnl}_{\mu \nu} (r) \rightarrow  \gamma_{mns}^{\mu \nu} (r)</math>.
:<math>\gamma^{mnl}_{\mu \nu} (r) \rightarrow  \gamma_{mns}^{\mu \nu} (r)</math>.
==Ng acceleration==
==Ng acceleration==
*[http://dx.doi.org/10.1063/1.1682399  Kin-Chue Ng "Hypernetted chain solutions for the classical one-component plasma up to Gamma=7000", Journal of Chemical Physics '''61''' pp. 2680-2689  (1974)]
*[http://dx.doi.org/10.1063/1.1682399  Kin-Chue Ng "Hypernetted chain solutions for the classical one-component plasma up to Gamma=7000", Journal of Chemical Physics '''61''' pp. 2680-2689  (1974)]
Line 197: Line 197:
*[http://dx.doi.org/10.1016/0010-4655(70)90034-2  Taro Tamura  "Angular momentum coupling coefficients", Computer Physics Communications  '''1''' pp.  337-342 (1970)]
*[http://dx.doi.org/10.1016/0010-4655(70)90034-2  Taro Tamura  "Angular momentum coupling coefficients", Computer Physics Communications  '''1''' pp.  337-342 (1970)]
*[http://dx.doi.org/10.1016/0010-4655(71)90030-0 J. G. Wills  "On the evaluation of angular momentum coupling coefficients", omputer Physics Communications  '''2''' pp. 381-382 (1971)]
*[http://dx.doi.org/10.1016/0010-4655(71)90030-0 J. G. Wills  "On the evaluation of angular momentum coupling coefficients", omputer Physics Communications  '''2''' pp. 381-382 (1971)]
==Clebsch-Gordon coefficients and Racah's formula==
The Clebsch-Gordon coefficients are defined by
:<math>\Psi_{JM}= \sum_{M=M_1 + M_2} C_{M_1 M_2}^J \Psi_{M_1 M_2},</math>
where <math>J \equiv J_1 + J_2</math> and satisfies <math>(j_1j_2m_1m_2|j_1j_2m)=0</math>
for <math>m_1+m_2\neq m</math>.
They are used to integrate products of three spherical harmonics (for example the addition of
angular momenta).
The Clebsch-Gordan coefficients are sometimes expressed using the related Racah V-coefficients,
<math>V(j_1j_2j;m_1m_2m)</math>
(See also the [[Racah W-coefficients]], sometimes simply called the Racah coefficients).
*[http://dx.doi.org/10.1016/0010-4655(74)90059-9  Robert E. Beck and Bernard Kolman "Racah's outer multiplicity formula", Computer Physics Communications  '''8''' pp.  95-100 (1974)]
==References==
==References==
#[http://dx.doi.org/10.1080/00268977900102861 M. J. Gillan "A new method of solving the liquid structure integral equations" Molecular Physics '''38''' pp. 1781-1794 (1979)]
#[http://dx.doi.org/10.1080/00268977900102861 M. J. Gillan "A new method of solving the liquid structure integral equations" Molecular Physics '''38''' pp. 1781-1794 (1979)]
Line 207: Line 220:
#[http://dx.doi.org/10.1063/1.1678503 L. Blum "Invariant Expansion. II. The Ornstein-Zernike Equation for Nonspherical Molecules and an Extended Solution to the Mean Spherical Model", Journal of Chemical Physics '''57''' pp. 1862-1869 (1972)]
#[http://dx.doi.org/10.1063/1.1678503 L. Blum "Invariant Expansion. II. The Ornstein-Zernike Equation for Nonspherical Molecules and an Extended Solution to the Mean Spherical Model", Journal of Chemical Physics '''57''' pp. 1862-1869 (1972)]
#[http://dx.doi.org/10.1063/1.1679655 L. Blum "Invariant expansion III: The general solution of the mean spherical model for neutral spheres with electostatic interactions", Journal of Chemical Physics '''58''' pp. 3295-3303 (1973)]
#[http://dx.doi.org/10.1063/1.1679655 L. Blum "Invariant expansion III: The general solution of the mean spherical model for neutral spheres with electostatic interactions", Journal of Chemical Physics '''58''' pp. 3295-3303 (1973)]
#[http://dx.doi.org/10.1063/1.454286    P. G. Kusalik and G. N. Patey " On the molecular theory of aqueous electrolyte solutions. I. The solution of the RHNC approximation for models at finite concentration",  Journal of Chemical Physics '''88''' pp. 7715-7738 (1988)]
[[category: integral equations]]
[[category: integral equations]]
Please note that all contributions to SklogWiki are considered to be released under the Creative Commons Attribution Non-Commercial Share Alike (see SklogWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)