Editing Computational implementation of integral equations

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
Integral equations are solved numerically.
Integral equations are solved numerically.
One has the [[Ornstein-Zernike relation]], <math>\gamma (12)</math>
One has the [[Ornstein-Zernike relation]], <math>\gamma (12)</math>
and a [[closure relations | closure relation]], <math>c_2 (12)</math> (which
and a closure relation, <math>c_2 (12)</math> (which
incorporates the [[bridge function]] <math>B(12)</math>).
incorporates the [[bridge function]] <math>B(12)</math>).
The numerical solution is iterative;  
The numerical solution is iterative;  
Line 19: Line 19:
Picard iteration generates a solution of an initial value problem for an ordinary differential equation (ODE) using fixed-point iteration.
Picard iteration generates a solution of an initial value problem for an ordinary differential equation (ODE) using fixed-point iteration.
Here are the four steps used to solve integral equations:
Here are the four steps used to solve integral equations:
===Closure relation <math>\gamma_{mns}^{\mu \nu} (r) \rightarrow c_{mns}^{\mu \nu} (r)</math>===
===1. Closure relation <math>\gamma_{mns}^{\mu \nu} (r) \rightarrow c_{mns}^{\mu \nu} (r)</math>===
(Note: for linear fluids <math>\mu = \nu =0</math>)
(Note: for linear fluids <math>\mu = \nu =0</math>)


Line 42: Line 42:


Thus  
Thus  
:<math>\left. \gamma(12) \right. =\gamma (r,x_1x_2,y,z_1z_2)</math>.
:<math>\gamma(12)=\gamma (r,x_1x_2,y,z_1z_2)</math>.


====Evaluate====
====Evaluate====
Evaluations of  <math>\gamma (12)</math> are performed at the discrete points <math>x_{i_1}x_{i_2},y_j,z_{k_1}z_{k_2}</math>
Evaluations of  <math>\gamma (12)</math> are performed at the discrete points <math>x_{i_1}x_{i_2},y_j,z_{k_1}z_{k_2}</math>
where the <math>x_i</math> are the <math>\nu</math> roots of the [[Legendre polynomials |Legendre polynomial]] <math>P_\nu(cos \theta)</math>
where the <math>x_i</math> are the <math>\nu</math> roots of the [[Legendre polynomial]] <math>P_\nu(cos \theta)</math>
where <math>y_j</math> are the  <math>\nu</math> roots of the [[Chebyshev polynomials |Chebyshev polynomial]] <math>T_{\nu}(\ cos \phi)</math>
where <math>y_j</math> are the  <math>\nu</math> roots of the [[Chebyshev polynomial]] <math>T_{\nu}(\ cos \phi)</math>
and where <math>z_{1_k},z_{2_k}</math>  are the  <math>\nu</math> roots of the Chebyshev polynomial
and where <math>z_{1_k},z_{2_k}</math>  are the  <math>\nu</math> roots of the [[Chebyshev polynomial]]
<math>T_{\nu}(\ cos \chi)</math>
<math>T_{\nu}(\ cos \chi)</math>
thus
thus
Line 59: Line 59:


where
where


:<math>\hat{d}_{s \mu}^m (x) = (2m+1)^{1/2} d_{s \mu}^m(\theta)</math>
:<math>\hat{d}_{s \mu}^m (x) = (2m+1)^{1/2} d_{s \mu}^m(\theta)</math>


where <math>d_{s \mu}^m(\theta)</math> is the angular, <math>\theta</math>, part of the
where <math>d_{s \mu}^m(\theta)</math> is the angular, <math>\theta</math>, part of the
Line 68: Line 66:
and
and


:<math>\left. e_s(y) \right.=\exp(is\phi)</math>
:<math>e_s(y)=\exp(is\phi)</math>


:<math>\left. e_{\mu}(z) \right.= \exp(i\mu \chi)</math>
 
:<math>e_{\mu}(z)= \exp(i\mu \chi)</math>


For the limits in the summations
For the limits in the summations


:<math>\left. L_1 \right.= \max (s,\nu_1)</math>
:<math>L_1= \max (s,\nu_1)</math>


:<math>\left. L_2 \right.= \max (s,\nu_2)</math>
:<math>L_2= \max (s,\nu_2)</math>


The above equation constitutes a separable five-dimensional transform. To rapidly evaluate
The above equation constitutes a separable five-dimensional transform. To rapidly evaluate
Line 99: Line 98:


Use [[Gauss-Legendre quadrature]] for <math>x_1</math> and <math>x_2</math>
Use [[Gauss-Legendre quadrature]] for <math>x_1</math> and <math>x_2</math>
Use [[Gauss-Chebyshev  quadrature]] for <math>y</math>, <math>z_1</math> and <math>z_2</math>.
Use [[Gauss-Chebyshev  quadrature]] for <math>y</math>, <math>z_1</math> and <math>z_2</math>
Thus
thus


:<math>c_{mns}^{\mu \nu} (r) = w^3  
:<math>c_{mns}^{\mu \nu} (r) = w^3  
Line 116: Line 115:
:<math>w=\frac{1}{NG}</math>
:<math>w=\frac{1}{NG}</math>


===Perform FFT from Real to Fourier space <math>c_{mns}^{\mu \nu} (r) \rightarrow  \tilde{c}_{mns}^{\mu \nu} (k)</math>===
===Perform FFT from Real to Fourier space<math>c_{mns}^{\mu \nu} (r) \rightarrow  \tilde{c}_{mns}^{\mu \nu} (k)</math>====


This is non-trivial and is undertaken in three steps:
This is non-trivial and is undertaken in three steps:
 
#Conversion from axial reference frame to spatial reference frame, ''i.e.''
====Conversion from axial reference frame to spatial reference frame====


:<math>c_{mns}^{\mu \nu} (r)  \rightarrow  c_{\mu \nu}^{mnl} (r)</math>
:<math>c_{mns}^{\mu \nu} (r)  \rightarrow  c_{\mu \nu}^{mnl} (r)</math>


this is done using the Blum transformation (Refs 7, 8 and 9):
this is done using the Blum transformation \cite{JCP_1972_56_00303,JCP_1972_57_01862,JCP_1973_58_03295}:


:<math>g_{\mu \nu}^{mnl}(r) = \sum_{s=-\min (m,n)}^{\min (m,n)} \left(  
:<math>g_{\mu \nu}^{mnl}(r) = \sum_{s=-\min (m,n)}^{\min (m,n)} \left(  
Line 133: Line 131:
\right)g_{mns}^{\mu \nu} (r)</math>
\right)g_{mns}^{\mu \nu} (r)</math>


====Fourier-Bessel Transforms====
#'''Fourier-Bessel Transforms''': <math>c_{\mu \nu}^{mnl} (r) \rightarrow \tilde{c}_{\mu \nu}^{mnl} (k)</math>
:<math>c_{\mu \nu}^{mnl} (r) \rightarrow \tilde{c}_{\mu \nu}^{mnl} (k)</math>


:<math>\tilde{c}_{\mu \nu}^{mnl} (k; l_1 l_2 l n_1 n_2) = 4\pi i^l \int_0^{\infty}  c_{\mu \nu}^{mnl} (r; l_1 l_2 l n_1 n_2) J_l (kr) ~r^2 {\rm d}r</math>
:<math>\tilde{c}_{\mu \nu}^{mnl} (k; l_1 l_2 l n_1 n_2) = 4\pi i^l \int_0^{\infty}  c_{\mu \nu}^{mnl} (r; l_1 l_2 l n_1 n_2) J_l (kr) ~r^2 {\rm d}r</math>


(see Blum and Torruella Eq. 5.6 in Ref. 7 or Lado Eq. 39 in Ref. 3),
(see Blum and Torruella Eq. 5.6 \cite{JCP_1972_56_00303} or Lado Eq. 39 \cite{MP_1982_47_0283}),
where <math>J_l(x)</math> is a [[Bessel functions |Bessel function]] of order <math>l</math>.
where <math>J_l(x)</math> is a [[Bessel function]] of order <math>l</math>.
`step-down' operations can be performed by way of sin and cos operations
`step-down' operations can be performed by way of sin and cos operations
of Fourier transforms, see Eqs. 49a, 49b, 50 of Lado  Ref. 3.
of Fourier transforms, see Eqs. 49a, 49b, 50 of Lado  \cite{MP_1982_47_0283}.
The  Fourier-Bessel transform is also known as a '''Hankel transform'''.
The  Fourier-Bessel transform is also known as a '''Hankel transform'''.
It is equivalent to a two-dimensional Fourier transform with a radially symmetric integral kernel.
It is equivalent to a two-dimensional Fourier transform with a radially symmetric integral kernel.


:<math>g(q)=2\pi \int_0^\infty f(r) J_0(2 \pi qr)r ~{\rm d}r</math>
<math>g(q)=2\pi \int_0^\infty f(r) J_0(2 \pi qr)r ~{\rm d}r</math>




:<math>f(r)=2\pi \int_0^\infty g(q) J_0(2 \pi qr)q ~{\rm d}q</math>
<math>f(r)=2\pi \int_0^\infty g(q) J_0(2 \pi qr)q ~{\rm d}q</math>


====Conversion from the spatial reference frame back to the  axial reference frame====
 
:<math>\tilde{c}_{\mu \nu}^{mnl} (k)  \rightarrow  \tilde{c}_{mns}^{\mu \nu} (k) </math>
#Conversion from the spatial reference frame back to the  axial reference frame
''i.e.''
 
<math>\tilde{c}_{\mu \nu}^{mnl} (k)  \rightarrow  \tilde{c}_{mns}^{\mu \nu} (k)  
</math>
this is done using the Blum transformation
this is done using the Blum transformation


:<math>g_{mns}^{\mu \nu} (r)
<math>g_{mns}^{\mu \nu} (r)
= \sum_{l=|m-n|}^{m+n} \left(  
= \sum_{l=|m-n|}^{m+n} \left(  
\begin{array}{ccc}
\begin{array}{ccc}
Line 163: Line 164:
g_{\mu \nu}^{mnl}(r)</math>  
g_{\mu \nu}^{mnl}(r)</math>  


===Ornstein-Zernike relation <math>\tilde{c}_{mns}^{\mu \nu} (k)  \rightarrow  \tilde{\gamma}_{mns}^{\mu \nu} (k)</math>===
OZ Equation} $  \tilde{c}_{mns}^{\mu \nu} (k)  \rightarrow  \tilde{\gamma}_{mns}^{\mu \nu} (k)$\\
 
~\\
For simple fluids:  
For simple fluids:  
\begin{equation}
\tilde{\gamma}(k)= \frac{\rho \tilde{c}_2 (k)^2}{1- \rho  \tilde{c}_2 (k)}
\end{equation}
For molecular fluids (see Eq. 19 of Lado \cite{MP_1982_47_0283})
%(see derivation in the thesis of Juan Antonio Anta pp. 105--107):
%\begin{equation}
%\tilde{\Gamma}_{\chi}(k) = (-1)^{\chi}\rho \left[{\bf I} - (-1)^{\chi} \rho \tilde{\bf C}_{\chi}(k) \right]^{-1} \tilde{\bf C}_{\chi}(k)\tilde{\bf C}_{\chi}(k)
%\end{equation}
\begin{equation}
\tilde{{\bf S}}_{m}(k) = (-1)^{m}\rho \left[{\bf I} - (-1)^{m} \rho \tilde{\bf C}_{m}(k) \right]^{-1} \tilde{\bf C}_{m}(k)\tilde{\bf C}_{m}(k)
\end{equation}
where $\tilde{{\bf S}}_{m}(k)$ and $\tilde{\bf C}_{m}(k)$ are matrices
with elements $\tilde{S}_{l_1 l_2 m}(k), \tilde{C}_{l_1 l_2 m}(k), l_1,l_2 \geq m$.\\
For mixtures of simple fluids  (see \cite{JCP_1988_88_07715} and the thesis of Juan Antonio Anta pp. 107--109):
\begin{equation}
\tilde{\Gamma}(k) =  {\bf D}  \left[{\bf I} -  {\bf D}  \tilde{\bf C}(k)\right]^{-1} \tilde{\bf C}(k)\tilde{\bf C}(k)
\end{equation}
~\\
4) {\bf Conversion back from Fourier space to Real space}:
$ \tilde{\gamma}_{mns}^{\mu \nu} (k)  \rightarrow \gamma_{mns}^{\mu \nu} (r) $\\
(basically the inverse of step 2).\\
i) axial reference frame to spatial reference frame: $ \tilde{\gamma}_{mns}^{\mu \nu} (k) \rightarrow  \tilde{\gamma}^{mnl}_{\mu \nu} (k)$\\
ii) Inverse Fourier-Bessel transform: $ \tilde{\gamma}^{mnl}_{\mu \nu} (k) \rightarrow  \gamma^{mnl}_{\mu \nu} (r)$\\
`Step-up' operations are given by Eq. 53 of  \cite{MP_1982_47_0283}.\\
The inverse Hankel transform is
\begin{equation}
\gamma(r;l_1 l_2 l n_1 n_2)= \frac{1}{2 \pi^2 i^l} \int_0^\infty  \tilde{\gamma}(k;l_1 l_2 l n_1 n_2) J_l (kr) ~k^2 {\rm d}k
\end{equation}
iii) Change from  spatial reference frame back to  axial reference frame:$  \gamma^{mnl}_{\mu \nu} (r) \rightarrow  \gamma_{mns}^{\mu \nu} (r)$.


:<math>\tilde{\gamma}(k)= \frac{\rho \tilde{c}_2 (k)^2}{1- \rho  \tilde{c}_2 (k)}</math>
==Ng acceleration==


For molecular fluids (see Eq. 19 of Lado Ref. 3)
*[http://dx.doi.org/10.1063/1.1682399  Kin-Chue Ng "Hypernetted chain solutions for the classical one-component plasma up to Gamma=7000", Journal of Chemical Physics '''61''' pp. 2680-2689  (1974)]
 
\section{Angular momentum coupling coefficients}
:<math>\tilde{{\mathbf S}}_{m}(k) = (-1)^{m}\rho \left[{\mathbf I} - (-1)^{m} \rho \tilde{\mathbf C}_{m}(k) \right]^{-1} \tilde{\mathbf C}_{m}(k)\tilde{\mathbf C}_{m}(k)</math>
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
\cite{CPC_1970_1_0337,CPC_1971_2_0381}
where <math>\tilde{{\mathbf S}}_{m}(k)</math> and <math>\tilde{\mathbf C}_{m}(k)</math> are matrices
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
with elements <math>\tilde S_{l_1 l_2 m}(k), \tilde{C}_{l_1 l_2 m}(k), l_1,l_2 \geq m</math>.
\section{Clebsch-Gordon coefficients and Racah's formula}
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
For mixtures of simple fluids  (see Ref. 10 Juan Antonio Anta PhD thesis pp. 107--109):
The Clebsch-Gordon coefficients are defined by
 
\begin{equation}
:<math>\tilde{\Gamma}(k) = {\mathbf D}  \left[{\mathbf I} {\mathbf D} \tilde{\mathbf C}(k)\right]^{-1} \tilde{\mathbf C}(k)\tilde{\mathbf C}(k)</math>
\Psi_{JM}= \sum_{M=M_1 + M_2} C_{M_1 M_2}^J \Psi_{M_1 M_2},
 
\end{equation}
===Conversion back from Fourier space to Real space===
where $J \equiv J_1 + J_2$ and satisfies
:<math>\tilde{\gamma}_{mns}^{\mu \nu} (k)  \rightarrow \gamma_{mns}^{\mu \nu} (r)</math>
\begin{equation}
(basically the inverse of step 2).
(j_1j_2m_1m_2|j_1j_2m)=0
====Axial reference frame to spatial reference frame====
\end{equation}
:<math>\tilde{\gamma}_{mns}^{\mu \nu} (k) \rightarrow  \tilde{\gamma}^{mnl}_{\mu \nu} (k)</math>
for $m_1+m_2\neq m$.\\
====Inverse Fourier-Bessel transform====
They are used to integrate products of three spherical harmonics (for example the addition of
:<math>\tilde{\gamma}^{mnl}_{\mu \nu} (k) \rightarrow  \gamma^{mnl}_{\mu \nu} (r)</math>
angular momenta).\\
'Step-up' operations are given by Eq. 53 of Ref. 3. The inverse Hankel transform is
The Clebsch-Gordan coefficients are sometimes expressed using the related Racah V-coefficients (Giulio Racah (1909 - 1965)),
:<math>\gamma(r;l_1 l_2 l n_1 n_2)= \frac{1}{2 \pi^2 i^l} \int_0^\infty  \tilde{\gamma}(k;l_1 l_2 l n_1 n_2) J_l (kr) ~k^2 {\rm d}k</math>
\begin{equation}
====Change from  spatial reference frame back to  axial reference frame====
V(j_1j_2j;m_1m_2m)
:<math>\gamma^{mnl}_{\mu \nu} (r) \rightarrow  \gamma_{mns}^{\mu \nu} (r)</math>.
\end{equation}
(See also the Racah W-coefficients, sometimes simply called the Racah coefficients).
\cite{CPC_1974_8_0095}


==Ng acceleration==
*[http://dx.doi.org/10.1063/1.1682399  Kin-Chue Ng "Hypernetted chain solutions for the classical one-component plasma up to Gamma=7000", Journal of Chemical Physics '''61''' pp. 2680-2689  (1974)]
==Angular momentum coupling coefficients==
*[http://dx.doi.org/10.1016/0010-4655(70)90034-2  Taro Tamura  "Angular momentum coupling coefficients", Computer Physics Communications  '''1''' pp.  337-342 (1970)]
*[http://dx.doi.org/10.1016/0010-4655(71)90030-0 J. G. Wills  "On the evaluation of angular momentum coupling coefficients", omputer Physics Communications  '''2''' pp. 381-382 (1971)]
==References==
==References==
#[http://dx.doi.org/10.1080/00268977900102861 M. J. Gillan "A new method of solving the liquid structure integral equations" Molecular Physics '''38''' pp. 1781-1794 (1979)]
#[http://dx.doi.org/10.1080/00268977900102861 M. J. Gillan "A new method of solving the liquid structure integral equations" Molecular Physics '''38''' pp. 1781-1794 (1979)]
Line 204: Line 231:
#[http://dx.doi.org/10.1080/00268978200100222 F. Lado "Integral equations for fluids of linear molecules III. Orientational ordering", Molecular Physics '''47''' pp. 313-317 (1982)]
#[http://dx.doi.org/10.1080/00268978200100222 F. Lado "Integral equations for fluids of linear molecules III. Orientational ordering", Molecular Physics '''47''' pp. 313-317 (1982)]
#[http://dx.doi.org/10.1080/00268978900101981 Enrique Lomba "An efficient procedure for solving the reference hypernetted chain equation (RHNC) for simple fluids" Molecular Physics '''68''' pp. 87-95 (1989)]
#[http://dx.doi.org/10.1080/00268978900101981 Enrique Lomba "An efficient procedure for solving the reference hypernetted chain equation (RHNC) for simple fluids" Molecular Physics '''68''' pp. 87-95 (1989)]
#[http://dx.doi.org/10.1063/1.1676864 L. Blum and A. J. Torruella "Invariant Expansion for Two-Body Correlations: Thermodynamic Functions, Scattering, and the Ornstein—Zernike Equation", Journal of Chemical Physics '''56''' pp. pp. 303-310  (1972)]
#[http://dx.doi.org/10.1063/1.1678503 L. Blum "Invariant Expansion. II. The Ornstein-Zernike Equation for Nonspherical Molecules and an Extended Solution to the Mean Spherical Model", Journal of Chemical Physics '''57''' pp. 1862-1869 (1972)]
#[http://dx.doi.org/10.1063/1.1679655 L. Blum "Invariant expansion III: The general solution of the mean spherical model for neutral spheres with electostatic interactions", Journal of Chemical Physics '''58''' pp. 3295-3303 (1973)]
#[http://dx.doi.org/10.1063/1.454286    P. G. Kusalik and G. N. Patey " On the molecular theory of aqueous electrolyte solutions. I. The solution of the RHNC approximation for models at finite concentration",  Journal of Chemical Physics '''88''' pp. 7715-7738 (1988)]
[[category: integral equations]]
Please note that all contributions to SklogWiki are considered to be released under the Creative Commons Attribution Non-Commercial Share Alike (see SklogWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)