Compressibility equation: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
mNo edit summary
mNo edit summary
Line 2: Line 2:




:<math> kT \left.\frac{\partial \rho }{\partial P}\right\vert_{T} = 1+ \rho \int h(r) ~{\rm d}r = 1+\rho \int [{\rm g}^{(2)}(r) -1 ] {\rm d}r= \frac{ \langle N^2  \rangle - \langle N\rangle^2}{\langle N\rangle}=\rho  k_B T  \chi_T</math>
:<math>k_B T \left.\frac{\partial \rho }{\partial P}\right\vert_{T} = 1+ \rho \int h(r) ~{\rm d}{\mathbf r} = 1+\rho \int [{\rm g}^{(2)}({\mathbf r}) -1 ] {\rm d}{\mathbf r}
= \frac{ \langle N^2  \rangle - \langle N\rangle^2}{\langle N\rangle}=\rho  k_B T  \chi_T</math>


where <math>{\rm g}^{(2)}(r)</math> is the [[pair distribution function]].
where <math>{\rm g}^{(2)}(r)</math> is the [[pair distribution function]] and <math>k_B</math> is the [[Boltzmann constant]].
For a spherical potential
For a spherical potential


:<math>\frac{1}{kT} \left.\frac{\partial P}{\partial \rho}\right\vert_{T} = 1 - \rho \int_0^{\infty} c(r) ~4 \pi r^2 ~{\rm d}r \equiv  1- \rho \hat{c}(0)
:<math>\frac{1}{k_BT} \left.\frac{\partial P}{\partial \rho}\right\vert_{T} = 1 - \rho \int_0^{\infty} c(r) ~4 \pi r^2 ~{\rm d}r \equiv  1- \rho \hat{c}(0)
\equiv \frac{1}{1+\rho \hat{h}(0)} \equiv \frac{1}{ 1 + \rho \int_0^{\infty} h(r) ~4 \pi r^2 ~{\rm d}r}</math>
\equiv \frac{1}{1+\rho \hat{h}(0)} \equiv \frac{1}{ 1 + \rho \int_0^{\infty} h(r) ~4 \pi r^2 ~{\rm d}r}</math>



Revision as of 16:24, 10 July 2007

The compressibility equation () can be derived from the density fluctuations of the grand canonical ensemble (Eq. 3.16 in Ref. 1). For a homogeneous system:


where is the pair distribution function and is the Boltzmann constant. For a spherical potential

Note that the compressibility equation, unlike the energy and pressure equations, is valid even when the inter-particle forces are not pairwise additive.

References

  1. J. S. Rowlinson "The equation of state of dense systems", Reports on Progress in Physics 28 pp. 169-199 (1965)