Editing Combining rules

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
The '''combining rules''' are geometric expressions designed to provide the interaction energy between two dissimilar non-bonded atoms (here labelled <math>i</math> and <math>j</math>). Most of the rules are designed to be used with a specific [[Idealised models| interaction potential]] in mind. (''See also'' [[Mixing rules]]).
{{Stub-general}}
==Böhm-Ahlrichs==
The '''combining rules''' (also known as ''mixing rules'') for binary [[mixtures]] are variously given by
<ref>[http://dx.doi.org/10.1063/1.444057 Hans‐Joachim Böhm and Reinhart Ahlrichs "A study of short‐range repulsions", Journal of Chemical Physics '''77''' pp. 2028- (1982)]</ref>
====Admur and Mason====
==Diaz Peña-Pando-Renuncio==
For the [[second virial coefficient]] of a mixture
<ref>[http://dx.doi.org/10.1063/1.442726 M. Diaz Peña, C. Pando, and J. A. R. Renuncio "Combination rules for intermolecular potential parameters. I. Rules based on approximations for the long-range dispersion energy", Journal of Chemical Physics  '''76''' pp. 325- (1982)]</ref>
<ref>[http://dx.doi.org/10.1063/1.1724353 I. Amdur and E. A. Mason "Properties of Gases at Very High Temperatures", Physics of Fluids '''1''' pp. 370-383 (1958)]</ref>
<ref>[http://dx.doi.org/10.1063/1.442727 M. Diaz Peña, C. Pando, and J. A. R. Renuncio "Combination rules for intermolecular potential parameters. II. Rules based on approximations for the long-range dispersion energy and an atomic distortion model for the repulsive interactions", Journal of Chemical Physics '''76''' pp. 333- (1982)]</ref>
:<math>B_{ij} = \frac{\left(B_{ii}^{1/3}+B_{jj}^{1/3}\right)^3}{8}</math>
==Fender-Halsey==
====Berthelot rule====
The Fender-Halsey combining rule for the [[Lennard-Jones model]] is given by <ref>[http://dx.doi.org/10.1063/1.1701284 B. E. F. Fender and G. D. Halsey, Jr. "Second Virial Coefficients of Argon, Krypton, and Argon-Krypton Mixtures at Low Temperatures", Journal of Chemical Physics '''36''' pp. 1881-1888 (1962)]</ref>
:<math>\epsilon_{ij} = \sqrt{\epsilon_{ii} \epsilon_{jj}}</math>
:<math>\epsilon_{ij} = \frac{2 \epsilon_i \epsilon_j}{\epsilon_i + \epsilon_j}</math>
====Hudson and McCoubrey====
==Gilbert-Smith==
The Gilbert-Smith rules for the [[Born-Huggins-Meyer potential]]<ref>[http://dx.doi.org/10.1063/1.1670463 T. L. Gilbert "Soft‐Sphere Model for Closed‐Shell Atoms and Ions", Journal of Chemical Physics '''49''' pp. 2640- (1968)]</ref><ref>[http://dx.doi.org/10.1063/1.431848 T. L. Gilbert, O. C. Simpson, and M. A. Williamson "Relation between charge and force parameters of closed‐shell atoms and ions", Journal of Chemical Physics '''63''' pp. 4061- (1975)]</ref><ref>[http://dx.doi.org/10.1103/PhysRevA.5.1708 Felix T. Smith "Atomic Distortion and the Combining Rule for Repulsive Potentials", Physical Review A '''5''' pp. 1708-1713 (1972)]</ref>.
==Good-Hope rule==
The Good-Hope rule for [[Mie potential |Mie]]–[[Lennard-Jones model |Lennard‐Jones]] or [[Buckingham potential]]s <ref>[http://dx.doi.org/10.1063/1.1674022  Robert J. Good and Christopher J. Hope "New Combining Rule for Intermolecular Distances in Intermolecular Potential Functions", Journal of Chemical Physics '''53''' pp. 540- (1970)]</ref> is given by (Eq. 2):
 
:<math>\sigma_{ij} = \sqrt{\sigma_{ii} \sigma_{jj}}</math>
==Hudson and McCoubrey==
<ref>[http://dx.doi.org/10.1039/TF9605600761 G. H. Hudson and J. C. McCoubrey "Intermolecular forces between unlike molecules. A more complete form of the combining rules", Transactions of the Faraday Society '''56''' pp.  761-766 (1960)]</ref>
<ref>[http://dx.doi.org/10.1039/TF9605600761 G. H. Hudson and J. C. McCoubrey "Intermolecular forces between unlike molecules. A more complete form of the combining rules", Transactions of the Faraday Society '''56''' pp.  761-766 (1960)]</ref>
==Hogervorst rules==
====Kong rules====
The Hogervorst rules for the [[Exp-6 potential]] <ref>[http://dx.doi.org/10.1016/0031-8914(71)90138-8    W. Hogervorst "Transport and equilibrium properties of simple gases and forces between like and unlike atoms", Physica '''51''' pp. 77-89 (1971)]</ref>:
<ref>[http://dx.doi.org/10.1063/1.1680358 Chang Lyoul Kong "Combining rules for intermolecular potential parameters. II. Rules for the Lennard-Jones (12–6) potential and the Morse potential", Journal of Chemical Physics '''59''' pp. 2464-2467 (1973)]</ref>
 
====Lorentz rule====
:<math>\epsilon_{12} = \frac{2 \epsilon_{11} \epsilon_{22}}{\epsilon_{11} + \epsilon_{22}}</math>
 
and
 
:<math>\alpha_{12}=\frac{1}{2} (\alpha_{11} + \alpha_{22})</math>
 
==Kong rules==
The Kong rules for the [[Lennard-Jones model]] are given by (Table I in
<ref>[http://dx.doi.org/10.1063/1.1680358 Chang Lyoul Kong "Combining rules for intermolecular potential parameters. II. Rules for the Lennard-Jones (12–6) potential and the Morse potential", Journal of Chemical Physics '''59''' pp. 2464-2467 (1973)]</ref>):
 
:<math>\epsilon_{ij}\sigma_{ij}^{6}=\left(\epsilon_{ii}\sigma_{ii}^{6}\epsilon_{jj}\sigma_{jj}^{6}\right)^{1/2}</math>
 
:<math> \epsilon_{ij}\sigma_{ij}^{12} =
\left[
\frac{
  (\epsilon_{ii}\sigma_{ii}^{12})^{1/13}
  +
  (\epsilon_{jj}\sigma_{jj}^{12})^{1/13}
  }{2}
\right]^{13}
</math>
==Kong-Chakrabarty  rules==
The Kong-Chakrabarty rules for the [[Exp-6 potential]] <ref>[http://dx.doi.org/10.1021/j100640a019 Chang Lyoul Kong , Manoj R. Chakrabarty "Combining rules for intermolecular potential parameters. III. Application to the exp 6 potential", Journal of Physical Chemistry '''77''' pp. 2668-2670 (1973)]</ref> are given by (Eqs. 2-4):
 
:<math>\left[ \frac{\epsilon_{12}\alpha_{12} e^{\alpha_{12}}}{(\alpha_{12}-6)\sigma_{12}} \right]^{2\sigma_{12}/\alpha_{12}}=
\left[ \frac{\epsilon_{11}\alpha_{11} e^{\alpha_{11}}}{(\alpha_{11}-6)\sigma_{11}} \right]^{\sigma_{11}/\alpha_{11}}
\left[ \frac{\epsilon_{22}\alpha_{22} e^{\alpha_{22}}}{(\alpha_{22}-6)\sigma_{22}} \right]^{\sigma_{22}/\alpha_{22}}
</math>
 
:<math>\frac{\sigma_{12}}{\alpha_{12}}= \frac{1}{2} \left( \frac{\sigma_{11}}{\alpha_{11}} +  \frac{\sigma_{22}}{\alpha_{22}} \right)</math>
 
and
 
:<math>\frac{\epsilon_{12}\alpha_{12}\sigma_{12}^6}{(\alpha_{12}-6)} = \left[\frac{\epsilon_{11}\alpha_{11}\sigma_{11}^6}{(\alpha_{11}-6)}  \frac{\epsilon_{22}\alpha_{22}\sigma_{22}^6}{(\alpha_{22}-6)}  \right]^{\frac{1}{2}}</math>
 
==Lorentz-Berthelot rules==
The Lorentz rule is given by <ref>[http://dx.doi.org/10.1002/andp.18812480110 H. A. Lorentz "Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase", Annalen der Physik '''12''' pp. 127-136 (1881)]</ref>
:<math>\sigma_{ij} = \frac{\sigma_{ii} + \sigma_{jj}}{2}</math>
:<math>\sigma_{ij} = \frac{\sigma_{ii} + \sigma_{jj}}{2}</math>
 
See also [[Lennard-Jones model]]
which is only really valid for the [[hard sphere model]].
====Tang and Toennies====
 
The Berthelot rule is given by <ref>[http://visualiseur.bnf.fr/Document/CadresPage?O=NUMM-3082&I=1703 Daniel Berthelot "Sur le mélange des gaz", Comptes rendus hebdomadaires des séances de l’Académie des Sciences, '''126''' pp. 1703-1855 (1898)]</ref>
 
:<math>\epsilon_{ij} = \sqrt{\epsilon_{ii} \epsilon_{jj}}</math>
 
These rules are simple and widely used, but are not without their failings <ref>[http://dx.doi.org/10.1080/00268970010020041 Jérôme Delhommelle; Philippe Millié "Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation", Molecular Physics '''99''' pp. 619-625  (2001)]</ref>
<ref>[http://dx.doi.org/10.1080/00268970802471137 Dezso Boda and Douglas Henderson "The effects of deviations from Lorentz-Berthelot rules on the properties of a simple mixture", Molecular Physics '''106''' pp. 2367-2370 (2008)]</ref>
<ref>[http://dx.doi.org/10.1063/1.1610435 W. Song, P. J. Rossky, and M. Maroncelli "Modeling alkane+perfluoroalkane interactions using all-atom potentials: Failure of the usual combining rules", Journal of Chemical Physics '''119''' pp. 9145- (2003)]</ref>
<ref>[http://dx.doi.org/10.1063/1.4867498  Caroline Desgranges and Jerome Delhommelle "Evaluation of the grand-canonical partition function using expanded Wang-Landau simulations. III. Impact of combining rules on mixtures properties", Journal of Chemical Physics '''140''' 104109 (2014)]</ref>.
 
==Mason-Rice rules== 
The Mason-Rice rules for the [[Exp-6 potential]] <ref>[http://dx.doi.org/10.1063/1.1740100 Edward A. Mason and William E. Rice "The Intermolecular Potentials of Helium and Hydrogen", Journal of Chemical Physics '''22''' pp. 522- (1954)]</ref>.
==Srivastava and Srivastava rules==
The Srivastava and Srivastava rules for the [[Exp-6 potential]] <ref>[http://dx.doi.org/10.1063/1.1742786  B. N. Srivastava and K. P. Srivastava "Combination Rules for Potential Parameters of Unlike Molecules on Exp‐Six Model", Journal of Chemical Physics '''24''' pp. 1275-1276 (1956)]</ref>.
==Sikora rules==
The Sikora rules for the [[Lennard-Jones model]] <ref>[http://dx.doi.org/10.1088/0022-3700/3/11/008 P. T. Sikora "Combining rules for spherically symmetric intermolecular potentials", Journal of Physics B: Atomic and Molecular Physics '''3''' pp. 1475- (1970)]</ref>.
==Tang and Toennies==
<ref>[http://dx.doi.org/10.1007/BF01384663 K. T. Tang and J. Peter Toennies "New combining rules for well parameters and shapes of the van der Waals potential of mixed rare gas systems", Zeitschrift für Physik D Atoms, Molecules and Clusters '''1''' pp. 91-101 (1986)]</ref>
<ref>[http://dx.doi.org/10.1007/BF01384663 K. T. Tang and J. Peter Toennies "New combining rules for well parameters and shapes of the van der Waals potential of mixed rare gas systems", Zeitschrift für Physik D Atoms, Molecules and Clusters '''1''' pp. 91-101 (1986)]</ref>
==Waldman-Hagler rules==
====Waldman-Hagler rules====
The Waldman-Hagler rules <ref>[http://dx.doi.org/10.1002/jcc.540140909 M. Waldman and A. T. Hagler "New combining rules for rare-gas Van der-Waals parameters", Journal of Computational Chemistry '''14''' pp.  1077-1084 (1993)]</ref> are given by:
<ref>[http://dx.doi.org/10.1002/jcc.540140909 M. Waldman and A. T. Hagler "New combining rules for rare-gas Van der-Waals parameters", Journal of Computational Chemistry '''14''' pp.  1077-1084 (1993)]</ref>
 
:<math>r_{ij}^0 = \left( \frac{ (r_i^0)^6 + (r_j^0)^6 }{2} \right)^{1/6}</math>
 
and
 
:<math>\epsilon_{ij} = 2 \sqrt{\epsilon_i \cdot \epsilon_j} \left( \frac{ (r_i^0)^3 \cdot  (r_j^0)^3 }{ (r_i^0)^6  + (r_j^0)^6 }  \right)</math>
 
==References==
==References==
<references/>
<references/>
'''Related reading'''
'''Related reading'''
*[http://dx.doi.org/10.1021/ja00046a032 Thomas A. Halgren "The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters", Journal of the American Chemical Society '''114''' pp. 7827-7843 (1992)]
*[http://dx.doi.org/10.1063/1.442726 M. Diaz Peña, C. Pando, and J. A. R. Renuncio "Combination rules for intermolecular potential parameters. I. Rules based on approximations for the long-range dispersion energy", Journal of Chemical Physics  '''76''' pp. 325- (1982)]
*[http://dx.doi.org/10.1063/1.442727 M. Diaz Peña, C. Pando, and J. A. R. Renuncio "Combination rules for intermolecular potential parameters. II. Rules based on approximations for the long-range dispersion energy and an atomic distortion model for the repulsive interactions", Journal of Chemical Physics '''76''' pp. 333- (1982)]
*[http://dx.doi.org/10.1080/00268970010020041 Jérôme Delhommelle; Philippe Millié "Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation", Molecular Physics '''99''' pp. 619-625  (2001)]
*[http://dx.doi.org/10.1080/00268970802471137 Dezso Boda and Douglas Henderson "The effects of deviations from Lorentz-Berthelot rules on the properties of a simple mixture", Molecular Physics '''106''' pp. 2367-2370 (2008)]
[[category: mixtures]]
[[category: mixtures]]
Please note that all contributions to SklogWiki are considered to be released under the Creative Commons Attribution Non-Commercial Share Alike (see SklogWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)