Editing Chemical potential

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 2: Line 2:
Definition:
Definition:


:<math>\mu=\left. \frac{\partial G}{\partial N}\right\vert_{T,p} = \left. \frac{\partial A}{\partial N}\right\vert_{T,V}</math>
:<math>\mu=\left. \frac{\partial G}{\partial N}\right\vert_{T,p}</math>


where <math>G</math> is the [[Gibbs energy function]], leading to  
where <math>G</math> is the [[Gibbs energy function]], leading to  


:<math>\frac{\mu}{k_B T}=\frac{G}{N k_B T}=\frac{A}{N k_B T}+\frac{p V}{N k_B T}</math>
:<math>\mu=\frac{A}{Nk_B T} + \frac{pV}{Nk_BT}</math>


where <math>A</math> is the [[Helmholtz energy function]], <math>k_B</math>
where <math>A</math> is the [[Helmholtz energy function]], <math>k_B</math>
is the [[Boltzmann constant]], <math>p</math> is the [[pressure]], <math>T</math> is the [[temperature]] and <math>V</math>
is the [[Boltzmann constant]], <math>p</math> is the pressure, <math>T</math> is the temperature and <math>V</math>
is the volume.
is the volume.


Line 16: Line 16:
number of particles
number of particles


:<math>\mu= \left. \frac{\partial A}{\partial N}\right\vert_{T,V}=\frac{\partial (-k_B T \ln Z_N)}{\partial N} = - k_B T \left[ \frac{3}{2} \ln \left(\frac{2\pi m k_BT}{h^2}\right) + \frac{\partial \ln Q_N}{\partial N} \right]</math>
:<math>\mu= \left. \frac{\partial A}{\partial N}\right\vert_{T,V}=\frac{\partial (-k_B T \ln Z_N)}{\partial N} = -\frac{3}{2} k_BT \ln \left(\frac{2\pi m k_BT}{h^2}\right) + \frac{\partial \ln Q_N}{\partial N}</math>
 
where <math>Z_N</math> is the [[partition function]] for a fluid of <math>N</math>
where <math>Z_N</math> is the [[partition function]] for a fluid of <math>N</math>
identical particles
identical particles
:<math>Z_N= \left( \frac{2\pi m k_BT}{h^2} \right)^{3N/2} Q_N</math>
:<math>Z_N= \left( \frac{2\pi m k_BT}{h^2} \right)^{3N/2} Q_N</math>
and <math>Q_N</math> is the  
and <math>Q_N</math> is the [[configurational integral]]
[http://clesm.mae.ufl.edu/wiki.pub/index.php/Configuration_integral_%28statistical_mechanics%29 configurational integral]
:<math>Q_N = \frac{1}{N!} \int ... \int \exp (-U_N/k_B T) dr_1...dr_N</math>
:<math>Q_N = \frac{1}{N!} \int ... \int \exp (-U_N/k_B T) dr_1...dr_N</math>
==Kirkwood charging formula==
The Kirkwood charging formula is given by <ref>[http://dx.doi.org/10.1063/1.1749657  John G. Kirkwood "Statistical Mechanics of Fluid Mixtures", Journal of Chemical Physics '''3''' pp. 300-313 (1935)]</ref>
:<math>\beta \mu_{\rm ex} = \rho \int_0^1 d\lambda \int \frac{\partial \beta \Phi_{12} (r,\lambda)}{\partial \lambda} {\rm g}(r,\lambda) dr</math>
where <math>\Phi_{12}(r)</math> is the [[intermolecular pair potential]] and <math>{\rm g}(r)</math> is the [[Pair distribution function | pair correlation function]].
==See also==
==See also==
*[[Constant chemical potential molecular dynamics (CμMD)]]
*[[Ideal gas: Chemical potential]]
*[[Ideal gas: Chemical potential]]
*[[Overlapping distribution method]]
*[[Widom test-particle method]]
==References==
<references/>
'''Related reading'''
*[http://dx.doi.org/10.1119/1.17844      G. Cook and R. H. Dickerson "Understanding the chemical potential",  American Journal of Physics '''63''' pp. 737-742 (1995)]
*[http://dx.doi.org/10.1007/s10955-005-8067-x T. A. Kaplan "The Chemical Potential", Journal of Statistical Physics '''122''' pp. 1237-1260 (2006)]
*[http://dx.doi.org/10.1063/1.4758757  Federico G. Pazzona, Pierfranco Demontis, and Giuseppe B. Suffritti "Chemical potential evaluation in NVT lattice-gas simulations", Journal of Chemical Physics '''137''' 154106 (2012)]
*[http://dx.doi.org/10.1063/1.4991324 E. A. Ustinov "Efficient chemical potential evaluation with kinetic Monte Carlo method and non-uniform external potential: Lennard-Jones fluid, liquid, and solid", Journal of Chemical Physics '''147''' 014105 (2017)]
*[https://doi.org/10.1063/1.5024631 Claudio Perego, Omar Valsson, and Michele Parrinello "Chemical potential calculations in non-homogeneous liquids", Journal of Chemical Physics 149, 072305 (2018)]
[[category:classical thermodynamics]]
[[category:statistical mechanics]]
Please note that all contributions to SklogWiki are considered to be released under the Creative Commons Attribution Non-Commercial Share Alike (see SklogWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)