Variables:
- N (Number of particles)
- p (Pressure)
- T (Temperature)
- V (Volume)
The classical partition function, for a one-component atomic system in 3-dimensional space, is given by
![{\displaystyle Q_{NpT}={\frac {\beta p}{\Lambda ^{3}N!}}\int _{0}^{\infty }dVV^{N}\exp \left[-\beta pV\right]\int d(R^{*})^{3N}\exp \left[-\beta U\left(V,(R^{*})^{3N}\right)\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2b25a24f7c4f7a7cfa5de491a6d0593a5ed1364b) 
where
 ; ;
 is the de Broglie wavelength is the de Broglie wavelength
 represent the reduced position coordinates of the particles; i.e. represent the reduced position coordinates of the particles; i.e. 
References
- D. Frenkel and B. Smit, "Understanding Molecular Simulation: From Alogrithms to Applications", Academic Press