Hermitian matrices

From SklogWiki
Revision as of 11:00, 11 February 2008 by Dduque (talk | contribs) (New page: A '''Hermitian matrix''' (or self-adjoint matrix) is a square matrix with complex elements which is equal to its own conjugate transpose — that is, the element in the <math>i</math>th ro...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

A Hermitian matrix (or self-adjoint matrix) is a square matrix with complex elements which is equal to its own conjugate transpose — that is, the element in the th row and th column is equal to the complex conjugate of the element in the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} th row and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i} th column, for all indices i and j:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{i,j} = a_{j,i}^*. }

If the conjugate transpose of a matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is denoted by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^\dagger} , then this can concisely be written as

For example,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix}3&2+i\\ 2-i&1\end{bmatrix} }

All eigenvalues of a Hermitian matrix are real, and, moreover, eigenvectors with distinct eigenvalues are orthogonal. The typical example of a Hermitian matrix in physics is the Hamiltonian (specially in quantum mechanics).

References